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Zusammenfassung: 

Über die letzten Jahre wurde gezeigt, dass auch der Darm im Zusammenhang mit metabolischen 

Erkrankungen, insbesondre mit Typ 2 Diabetes (T2D), steht. Ziel dieser Arbeit war es die bakterielle 

Zusammensetzung des Darms in prospektiven Populationskohorten zu beschreiben und 

Einflussfaktoren zu bestimmen. Besonderer Fokus lag dabei auf dem Zusammenhang des Darms mit 

T2D, welcher in einer prospektiven Populationskohorte mit 1,976 Teilnehmern (KORA) untersucht 

wurde. Es konnte gezeigt werden, dass die relative Abundanz der Bakterien einer tageszeitlichen 

Schwankung unterliegen und die Zusammensetzung des Darms einer 24-Stunden Oszillation aufzeigt. 

Dabei konnte in 13 Bakterien bei T2D ein gestörter Rhythmus festgestellt werden. Diese arrhythmische 

bakterielle Risikosignatur wurde in kreuzvalidierte Vorhersagemodelle zur Klassifizierung und 

Prädiktion von T2D verwendet und zeigte eine ‘Area under the Curve‘ (AUC) von 0.73. Die Integration 

von BMI als unabhängigen Risikomarker trug zusätzlicher zu einer besseren Klassifizierung bei (AUC = 

0.79).  In einer unabhängigen Kohorte von 1,363 Individuen (FoCus) konnte zum einen die mikrobielle 

Oszillation des Darms bestätigt werden und zum anderen die Übertragbarkeit der arrhythmischen 

Risikosignatur zur Klassifizierung von T2D (AUC = 0.76) gezeigt werden. Die Vorhersagekraft der 13 

selektierten Bakterien von T2D wurde in dem prospektiven Teil der KORA Kohorte in 699 Individuen, 

welche eine fünf Jahres Inzidenzrate von T2D aufweisen, gezeigt (AUC = 0.78). Die Sequenzierung des 

Metagenoms einer Subkohorte (N = 50 Individuen, n = 100 Proben) identifizierte 26 metabolisch 

Stoffwechselwege, welche im Zusammenhang mit tageszeitlich oszillierenden Bakterien gebracht 

werden, konnte. Zusammenfassen wurde in dieser Arbeit das Zusammensetzung des Darms in großen 

Populationskohorten und der Einfluss von zirkadianen Rhythmen Vorkommen beschrieben. Es wurde 

eine Risikosignatur aus arrhythmischen Bakterien zur Klassifizierung und Prädiktion von T2D 

ausgearbeitet und ein Zusammenhang mit metabolischen Stoffwechselwegen erstellt. 

Die Ergebnisse zeigten, dass zusätzliche Faktoren, so wie dir Zeitpunkt der Probenentnahme einen 

substanziellen Einfluss auf die Ergebnisse einer Studie haben. Um den Einfluss von weiteren 

Störfaktoren zu minimieren, wurden alle Schritte, von der Probenverarbeitung, über die 

bioinformatische und statistische Auswertung, analysiert validiert und optimiert.  

 

 

  



 

 

Summary 

Over the last few years, recent research has shown that the gut microbiota composition is associated 

with metabolic diseases, especially Type 2 Diabetes (T2D). The aim of this work was to describe the gut 

microbial composition in prospective population-based cohorts and to determine influencing factors. 

Special focus was put on the association of the gut microbiota with T2D, which was investigated in a 

prospective population cohort of 1,976 participants (KORA). We identified changes in the gut 

microbiota that are associated with a 24-hour diurnal oscillation. A disrupted rhythm of 13 bacteria 

was found in patients with T2D. This arrhythmic bacterial risk signature was used in cross-validated 

predictive models for classification and prediction of T2D. The model was able to differentiate T2D 

from nonT2D with an Area under the Curve (AUC) of 0.73. The integration of BMI as an independent 

risk marker further contributed to a better classification of the disease (AUC = 0.79).  In an independent 

cohort of 1,363 individuals (FoCus), diurnal oscillation of the gut bacteria could be confirmed and the 

generalizability of the arrhythmic risk signature for the classification of T2D was shown (AUC = 0.76). 

The predictive power of the 13 selected bacteria of T2D was shown in the prospective part of the KORA 

cohort in 699 individuals with a five-year incidence rate of T2D (AUC = 0.78). Additionally, this 

arrhythmic risk signature was able to predict T2D in another cohort from the UK (TwinsUK) including 

1,399 individuals. Metagenomic analysis of a subset of the KORA cohort (N = 50 individuals, n = 100 

samples) identified 26 metabolically associated pathways could be associated with time-of-day 

oscillation. In summary, this work described the composition of the gut in large population cohorts and 

the influence of circadian rhythms. The results showed that additional factors, such as time of sample 

collection, have a substantial influence on shifts in gut microbiota composition. In order to minimize 

the influence of additional confounding factors, all steps, from sample processing to bioinformatic and 

statistical analysis, were validated and optimized. A risk signature from arrhythmic bacteria for the 

classification and prediction of type 2 diabetes was elaborated and an association with metabolic 

pathways was established. 
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1. Introduction 

The systematic examination of the gut microbiota - the entirety of the microorganisms living in 

the intestine – established a close connection between changes in the intestinal microbiota and the 

development of various diseases. Recent findings showed that the characterization of the gut 

microbiota is important for the prevention, diagnosis and treatment of multiple diseases, including 

diabetes, cancer, inflammatory bowel diseases (IBD) and psychological disorders (Qin et al. 2012, Hsiao 

et al. 2013, Karlsson et al. 2013, Karlsson et al. 2013, Zhernakova et al. 2016, Pascal et al. 2017, 

Waldschmitt et al. 2018, Valles-Colomer et al. 2019). This work provides new insights to the role of  the 

gut microbiota in the development of Type 2 diabetes (T2D). Assessment of DNA sequencing 

procedures is of great importance to obtain reliable results. This work investigate the different 

technical factors that could influence microbiome analysis and highlights the importance for 

standardization. 

 

1.1. The human gastrointestinal tract harbors a complex and dynamic 

population of microorganisms 

The human intestinal tract consists of two main segments. The small intestine is responsible for 

nutrients digestion and reabsorption. The large intestine consist of cecum, rectum and anal canal – 

responsible for the absorption of water. The remaining defecated material is referred to as feces. It 

contains bacteria which are reflecting the microbial community (microbiota) of the entire intestinal 

tract and is used as starting material in human population-based studies investigating the microbial 

composition of the gut. The analysis of the gut microbiome is the description and classification of the 

gut bacteria and the analysis of their function (microbiome). The entire genetic material within a 

microbial ecosystem is referred to as the metagenome and provides information about the bacterial 

species and their metabolic activity. Historically, the characterization of the human gut microbiota 

relied on culture-dependent methods. Especially after the ability to grow bacteria anaerobically 

researchers started to become interested in understanding the composition and function of the 

microbial communities as early as in the 1940s and 1950s (Figure 1). However, the inability to cultivate 

a large proportion of microorganisms hindered the ability to capture the complete biodiversity of 

human-associated microbial communities. In 1965 Schaedler et al. successfully transferred a bacterial 

community to germ-free mice (Wymore Brand et al. 2015). Seven years later Peppercorn and Goldman 

(1972) found that intestinal bacteria are influenced by the human metabolism. In 1996 Wilson and 

Blitchington (1996) established a culture-based identification method using sequencing of the 16S 

rRNA genes from each bacterium grown of a human fecal sample. In 2005 a study showed that a 
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change in diet alters the activity of the colonic microbiota (Toner 2005). In the same year Eckburg et 

al. (2005) discovered the presence of a large inter-individual variation of human gut microbiota and 

laid the foundations to explore its association with health and disease. Since 2006 numerous studies 

have highlighted the role of diet on the gut microbiota and host metabolism (Wu et al. 2011, Clarke et 

al. 2012, David et al. 2014, Zhernakova, Kurilshikov et al. 2016). Since the early 2000s, technologies for 

high-throughput sequencing and bioinformatical analysis tools improved enabling the analysis of large 

human populations and metagenomes (Caporaso et al. 2010, Callahan et al. 2016, Lagkouvardos et al. 

2016).  

 

 

 

1.2. Host physiology influences the bacterial composition of the human gut 

With the advent of high-throughput sequencing and the ability to analyze thousands of 

individuals, it quickly became clear that the composition of the human gut microbiota shows large 

inter-individual variation. 

 One of the very first large human population-based studies focusing on the bacterial 

composition of the gut was the Human Microbiome Project (HMP) starting in 2008. It aimed  to provide 

a reference database of microbes and their association with health. This and further studies from all 

over the world provided solid evidence for a large bacterial variation found among individuals (Qin et 

al. 2010, Human Microbiome Project 2012, Falony et al. 2016). Partially, these differences are 

explained by environmental factors such as diet, geography or age. However, causes for most parts of 

these differences are still unclear and it was yet not possible to define a healthy reference gut 

microbiota for humans. The MetaHit consortium – a collaborative project exploring the genetic 

influence of human microbes to understand their impact on our health and wellbeing – introduced the 

concept of ´enterotypes´ (Arumugam et al. 2011). It was shown that humans can be divided into three 

clusters or ´enterotypes´ based on the dominance of certain bacterial taxa. These three clusters are 

characterized by an increased abundance of Prevotella, Bacteroidetes or Ruminococcus. Later studies 

tried to reproduce the concept of ´enterotypes´, however the results remain inconclusive. Some were 

not able to detect any (Huse et al. 2012, Koren et al. 2013), while others determined a different number 

of distinct clusters (Wu, Chen et al. 2011, Karlsson et al. 2014, Zhou et al. 2014, Falony, Joossens et al. 

Figure 1 Milestones in the human microbiome research. 
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2016). A meta-analysis of human population-based cohort studies from all over the world indicated 

that the number of determined clusters varies according to geographical region (Costea et al. 2018). 

Nevertheless, most studies report that the three genera, Prevotella, Bacteroides and Rumincoccus, are 

the representative taxa of each of the cluster showing a large variation between groups of individuals. 

These findings can be seen as the core concept of the ´enterotypes´ (Costea, Hildebrand et al. 2018). 

The influence of dietary habits showed that the Bacteroidetes ´enterotype ´ is associated with a high-

fat diets (Hildebrandt et al. 2009, Turnbaugh et al. 2009) as well as with insulin resistance, increased 

CRP levels and a low-grade inflammation (Bloom et al. 2011, Claesson et al. 2012, Le Chatelier et al. 

2013). Nevertheless, up to now there is no causal explanation on why and how these cluster are 

formed.  

Factors underlying the large inter-individual variation in the microbial composition are largely 

unknown. However, drug-related effects have been suggested as one important factor. Especially the 

exposure of antibiotics which is associated with a loss in microbial diversity and a depletion of specific 

microbial species as well as in an increase in resistance genes (De La Cochetiere et al. 2008, Dethlefsen 

et al. 2008, Raymond et al. 2016). Thus, due to the strong effect of antibiotics on the microbial 

composition this medication normally is an exclusion criterion in population-based studies. In addition, 

other medications e.g., proton pump inhibitors (PPI) influence the composition of the gut microbiota 

e.g., by an increased abundance of the phyla Firmicutes (Maier et al. 2018). It was also shown that 

metformin has an effect on the gut microbiome by increasing the abundance of health-related species 

(e.g., Akkermansia, Bifidobacterium) and resulted in an improved glucose tolerance (Wu et al. 2017). 

 

1.3. The gut microbiota in health and disease 

The bacterial composition of the gut may also affect the well-being of an individual. Since the 

establishment of next generation sequencing technologies in 2005, the number of publications 

focusing on the bacterial composition of the gut microbiota increased from 4,181 (year 2010) to 65,593 

publications (year 2019) and is still rising. While many  studies are analyzing the gut microbiota in a 

normal healthy population, some are trying to find associations of the gut microbiome with health. 

The majority of studies focused on the relationship between gut-related diseases, such as 

inflammatory bowel disease (IBD) and their association with the intestinal bacterial ecosystem.  Others 

tried to find a link between metabolic related disorders (obesity, cardiovascular disease and T2D) and 

the gut microbiota.   

Independent of the addressed disease, main focus of these studies was to determine bacteria 

which are linked to the disease and tried to define a bacterial signature related to the progression or 

onset of the disease. Thus, a bacterial risk signature seems to exist enabling classification of IBD or 
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persons at risk (Ananthakrishnan et al. 2017, Pascal, Pozuelo et al. 2017). Nevertheless, the results 

showed that the identification of bacterial risk signatures is only merely overlapping between studies.  

 

1.4. Type 2 diabetes a global pandemic and one of the major challenges to 

human health 

Globally the number of people suffering from a metabolic disorder is increasing rapidly. According 

to the World Health Organization (WHO), the number of T2D cases increased from 108 million in year 

1980 (about 2.4% of the world’s population affected) to 463 million in year 2019 (about 9% affected), 

which means that 1 out of 11 individuals is going to develop T2D.  

The pathophysiology of T2D is typically characterized by impaired beta-cell function (ability to 

produce insulin) and impaired responsiveness to normal insulin levels resulting in a dysregulated 

glucose metabolism (Skyler et al. 2017). Most clinical treatments of T2D either target insulin resistance 

or aim to elevate insulin levels by increasing beta cell function. Main determinants for the development 

of T2D are genetics, lifestyle, exposure to medications and diet (Wu et al. 2014). A high-caloric, high-

fat diet and low physical activity are key factors for the development of T2D, mostly in combination 

with obesity. Currently the risk assessment for the development of T2D is based on biochemical 

measures. The progression of T2D can be influenced by genetic markers e.g., TCF7L2 ( affects insulin 

secretion and glucose production Huang et al. 2018), ABCC8  (regulate insulin, Andrikopoulos et al. 

2016), GCGR (a glucagon hormone involved in glucose regulation, Lee et al. 2014). 

 Nevertheless, about 50% of people with diabetes remain undiagnosed and may have already 

developed complications (Gillies et al. 2008). Therefore, it is important to better understand the 

mechanism contributing to T2D development and to install prevention measures including early 

diagnoses and treatment. Based on an early diagnosis of individuals under risk dietary habits, lifestyle 

and behavior could be changed and thus, could delay the onset of T2D.  

 

1.5. The association of the human gut microbiota and metabolic health 

With increasing evidence the human gut microbiota seems to be linked to metabolic health 

(Sonnenburg and Backhed 2016) and altered microbial profiles are associated with obesity, insulin 

resistance and T2D (Turnbaugh et al. 2006, Qin, Li et al. 2010, Qin, Li et al. 2012, Karlsson, Tremaroli et 

al. 2013, Goodrich et al. 2014, Pedersen et al. 2016, Thingholm et al. 2019, Zhou et al. 2019). The 

identification of disease-related microbial risk profiles is complicated by the inter-individual variability 

(Falony, Joossens et al. 2016, Zhernakova, Kurilshikov et al. 2016), regional effects (He et al. 2018) and 

drug-associated changes in the gut microbiota (Forslund et al. 2015, Pryor et al. 2019). Several studies 
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tried to find bacterial signatures contributing to the development of T2D (Pedersen, Gudmundsdottir 

et al. 2016, He et al. 2018, Li et al. 2020). Despite the extensive efforts to define the role of the gut 

microbiota in metabolic diseases, especially obesity and T2D, there is still no consensus on disease-

related bacterial taxa with diagnostic relevance. There are some overlaps between the studies, for 

example the genera Akkermansia, Eubacterium rectale, Alistepes and species Feacalibacterium 

prausnitzii are positive associated with health, i.e. absence of T2D (Turnbaugh, Ley et al. 2006, Qin, Li 

et al. 2012, Karlsson, Tremaroli et al. 2013, Thingholm, Ruhlemann et al. 2019), while the association 

with species increased in individuals with metabolic disorders is lacking. Another limitation of disease 

associated bacterial signatures is the lack of specificity. For instance, species of the family 

Christensenellaceae, but also Escherichia coli are associated with Crohn’s disease and T2D (Pascal, 

Pozuelo et al. 2017), which complicates the identification of distinctive microbial risk factors for 

metabolic disorders.  

 

 Functional shifts of the gut microbiome in metabolic disease 

To better understand the relationship between bacterial composition of the gut and health it is 

important to examine the relationship between microbial composition and their biochemical  

contribution to the gut metabolic environment and interactions with host functions. Functional activity 

includes production of healthy metabolites, the degradation of fibers and related functions, like host 

immune system training. For instance, bacterial taxa, such as Roseburia, Alistipes or Akkermansia, were 

shown to be associated with the functionality of certain pathways. Especially butyrate producing 

bacteria seem to have a protective effect by reducing the risk to develop inflammatory and metabolic 

diseases (Canfora et al. 2015). Pathways associated with the metabolism of carbohydrate and amino-

acids are core functional pathways expressed in all individuals. They are responsible for the 

biosynthesis or degradation of fructose and mannose and amino-sugars. Some pathways were found 

to be responsible for the degradation of N-glycan (Turnbaugh, Ley et al. 2006). Some of these pathways 

are enriched in obese and diabetic individuals. The under- or overrepresentation of metabolic factors 

(e.g., insulin level) impacts host physiology. This may result in an enrichment of xenobiotic, amino acid 

and glycan pathways as well as with pathway–mediated biosynthesis of vitamins and isoprenoids 

(Backhed et al. 2004, Gill et al. 2006). Pathways of bacterial chemotaxis and ABC transporters were 

reported to be associated with high-fat diet and found to be increased in individuals with increased 

insulin resistance (Turnbaugh, Ley et al. 2006, Karlsson, Tremaroli et al. 2013). A study from Zeevi et 

al. (2015) further showed that the uptake of negatively charged amino acids, such as glutamate, is 

associated with T2D. The functional changes are reflected by alterations in the profile of microbiota-

derived metabolic byproducts.  
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 Disrupted circadian rhythms influence the human metabolic health 

Circadian rhythms are found in nearly every organ and tissue with similarities among 

mammalians. Following a day-night cycle the human body responses in mental, physiological and 

behavioral changes. It can also affect body function and health by controlling hormones, body 

temperature and other important functions. The circadian clock synchronizes daily food intake 

behavior and metabolism with the day and night cycle (Panda 2019) and has recently been proposed 

to influence microbial homeostasis (Thaiss et al. 2014). Daytime-dependent fluctuations were 

identified in both the oral and fecal microbiota (Thaiss, Zeevi et al. 2014, Kaczmarek et al. 2017). 

Circadian rhythms in gut microbiota composition and function are sensitive to diet and feeding 

patterns in murine models. A diet-induced obesity dampens cyclic microbial fluctuations in rodents 

(Zarrinpar et al. 2014) and epidemiological studies continue to show associations between circadian 

dysfunction due to modern lifestyle and T2D (Onaolapo and Onaolapo 2018), supporting the 

hypothesis that diurnal oscillations in microbiota composition and function may contribute to 

metabolic health. The lack of documentation of stool sampling time and in addition to the well-

documented regional and individual differences in microbiota profiles may account for discrepancies 

between studies.  

 

1.6. The composition of the gut microbiota in large population-based cohorts  

With the development of high-throughput sequencing technologies it became possible to analyze 

the human gut microbiota of thousands of individuals in parallel and to find associations with the 

presence/absence and abundance of bacteria with host health. 

 

 16S rRNA gene and metagenomic sequencing – Taxonomic and functional annotation  

Next generation sequencing (NGS) allows generating thousands of sequence reads in parallel 

(Langille et al. 2013), while Sanger sequencing produces only one sequence at a time (Sanger et al. 

1977). NGS became available in the 2000s and advanced to the most popular method for rapid analysis 

of diverse complex microbial communities (Hamady and Knight 2009).  

Therefore, the 16S rRNA gene is used to determine the taxonomy of bacterial members in a 

community. This ribosomal gene has been established by Woese et al. in 1990 and was shown to be a 

valuable tool for bacterial species determination (Woese et al. 1990). The 16S rRNA gene codes for the 

16S ribosomal RNA, which is a component of the 30S small ribosome subunit. The gene is divided into 

nine hypervariable regions (V1 – V9) ranging from 30 bp to 100 basepairs (bp), flanked by conserved 

regions and in total reaching a length of about 1,500 bp. The conserved regions of the 16S rRNA gene 

are very similar between almost all bacteria. In contrast, the hypervariable regions are often species-
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specific and can be used for the identification of different bacterial species. The targeted variable 

regions are selected by using region-specific primers binding to the conserved regions. NGS amplicon 

sequencing using Illumina MiSeq machines enables to sequence up to two-times 300 bp (paired-end 

sequencing) thus, allowing a theoretical amplicon size of 600 bp at maximum. Since the 16S rRNA gene 

is about 1,500 bp, only part of it can be analyzed by this technique. This may cause information loss 

and complicates the differentiation between closely related species. Latest research is focusing on the 

development of full-length sequencing technologies to cover the whole 16S rRNA gene. Although 

methods for this are still under development, first results showed promising outcomes (Fuks et al. 

2018). Overall, if taxonomic classification is the main objective short amplicon sequencing of the 16S 

rRNA gene sequencing provides reasonable taxonomic resolution at the genus level in a high 

throughput setting with low costs.  

Metagenomic shotgun sequencing is another approach to identify bacterial community 

members. Here the complete DNA of a sample is sequenced. Depending on sequencing depth, species 

can be determined even on strain level. Metagenomes also allow connecting strains with functional 

pathways. Nevertheless, not all genes present in an organism are from the environment the sample 

was taken from (Bleicher et al. 2010). Furthermore, some genes are not functionally annotated which 

limits the functional analysis. For instance, the number of unknown genes varies between 15% for E. 

coli (e.g. Escherichia coli Ghatak et al. 2019) and 65% for Bifidobacterium infantis (e.g. Bifidobacterium 

infantis Albert et al. 2019). The short fragments generated by shotgun NGS are assembled into contigs 

and mapped against databases to analyze the gene content for each community or environment 

(Segata et al. 2012, Sunagawa et al. 2013, Wood et al. 2019).  

 

 Technical factors affecting the outcome of gut microbiota profiling  

Sample preprocessing for 16S rRNA gene sequencing starts with the isolation of the microbial 

DNA followed by the amplification of the targeted region of the 16S rRNA gene (Klindworth et al. 2013, 

Kozich et al. 2013) via the Polymerase-chain reaction (PCR) (Bartram et al. 2011). Each of these steps 

influence the outcome and is a potential source of bias. While in the DNA extraction, the bacterial DNA 

yield and composition may vary according to the method (Claassen et al. 2013, Wesolowska-Andersen 

et al. 2014, Wagner Mackenzie et al. 2015). The PCR is influenced by the primer selection (Berry et al. 

2011, Klindworth, Pruesse et al. 2013) and the number of cycles for the amplification resulting in over- 

or underestimation of certain bacteria (Bartram, Lynch et al. 2011, Salter et al. 2014).  

Fecal sample collection protocols and storage conditions (storage time, temperature etc.) were 

shown to influence the composition of the bacteria. Short- and long-term storage have an effect on 

microbial DNA stability (Carroll et al. 2012, Dominianni et al. 2014) with some bacteria being more 
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sensitive than others (Cuthbertson et al. 2014, Shaw et al. 2016). Recommended preservation method 

is to immediately freeze samples at -20°C and, for long-term storage, keep samples at -80 °C (Goodrich 

et al. 2014). It was further shown that a DNA stabilization liquid has advantages for preservation of the 

DNA and facilitates the process of sample collection and storage in studies (Ilett et al. 2019). After 

sample collection and possible storage DNA is isolated. There is a variety of different protocols, ranging 

from automatized commercial approaches to in-house developed protocols (Claassen, du Toit et al. 

2013, Schirmer et al. 2015). However, there is no extraction method suitable for every sample type 

and protocols are not standardized, which introduces variability between sequencing facilities and 

between studies (Hiergeist et al. 2016), showing differences observed in the amount of isolated DNA 

as well as in the bacterial species found within a sample (Claassen, du Toit et al. 2013, Salter, Cox et al. 

2014, Wagner Mackenzie, Waite et al. 2015). Amplification of the 16S rRNA genes from the extracted 

DNA is conducted by using universal primers targeting one to three hypervariable regions of the 16S 

rRNA gene (Klindworth, Pruesse et al. 2013), while again the selection of chemicals and methods (e.g. 

primer selection, polymerase reagents, number of cycles) are influencing the results (Berry, Ben 

Mahfoudh et al. 2011, Klindworth, Pruesse et al. 2013). Thus, despite its popularity and usefulness 

sample preparation for 16S rRNA gene sequencing is prone to technical artifacts and biases at various 

levels of the workflow.  

 

 Bioinformatical methods and tools for preprocessing of sequencing data 

For the processing of raw sequencing data (i.e., FASTQ files), a common approach is the 

clustering of similar nucleotide sequences into operational taxonomic units (OTUs) (Edgar 2013, 

Sunagawa, Mende et al. 2013, Rideout et al. 2014). This approach is integrated in many metagenomic 

pipelines (Caporaso et al. 2012, Lagkouvardos, Joseph et al. 2016). A 97% identity cutoff is used as 

proxy for species-level diversity as it was proposed by several clustering approaches (Schloss et al. 

2009, Edgar 2010, Rideout, He et al. 2014).  

Another strategy was implemented in recent years, which tries to build a model on the 

sequencing errors found and to correct for those. This concept was introduced as the ‘exact sequence 

variant’ (ESV) or meanwhile commonly named ‘amplicon sequence variant’ (ASV) (Callahan et al. 

2016). While the OTU approach integrates different sequences of similarity ≥ 97%, ASVs consist of 

identical but perhaps corrected sequences and as such, each ASV is a different variant. The increase in 

resolution (more ‘species’ present) brings along the major disadvantage of this approach resulting in a 

reduced overlap in taxonomically similar entities between samples and thus, increases the complexity 

to find overlaps in ‘species’ (i.e., ASVs) common between samples (Callahan et al. 2017).  
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Mapping algorithms (Altschul et al. 1990, Edgar et al. 2011, Katoh and Standley 2013) allow 

the assignment of nucleotide sequences to the corresponding bacteria. 16S rRNA amplicon sequences 

are aligned against reference sequences from databases (e.g. RDP (Wang et al. 2007), Greengenes 

(Yokono et al. 2018) and Silva (Quast et al. 2013)). Depending on the settings of the algorithm, e.g. 

allowed mismatches, the best sequence match is determined, and the considered taxonomy is 

assigned. The taxonomic classification is influenced by the database used to build the alignment, which 

may differ in nomenclature or may be incomplete (Edgar 2018, Park and Won 2018). 

In microbiology it is assumed that more closely related species (e.g., similar 16S rRNA genes) 

have similar ecological functions. Based on phylogenetic trees is possible to determine closely related 

sequences and to define microbial differences between groups of individuals (Chen et al. 2012). In 

order to build a tree a multiple sequence alignment (Madeira et al. 2019) is generated from the 

nucleotide sequences of OTUs (or ASVs) (Price et al. 2009). The tree is either built using greedy 

algorithms, e.g. using the Neighbor-Joining approach, which are fast in computational time but prone 

to error (e.g. no global solution) and with limitations for large datasets. Another building approach is 

the bootstrapping method, e.g. Maximum Likelihood approach (Price, Dehal et al. 2009), which works 

better for big data sets but performs with poor computational power.  

Downstream analysis of OTU (Schloss, Westcott et al. 2009, Lagkouvardos et al. 2017) or ASV 

tables (Callahan, McMurdie et al. 2016) is carried out for the calculation and visualization of diversity 

and composition of complex microbial communities, extract information about taxonomic 

composition of the environment and address differences between groups and microbial diversity. The 

integration of adequate statistical methods allows the identification of OTUs/ASVs, or taxonomic 

groups that are differentially abundant between individuals (or treatments) and statistical methods 

allow inferring correlations between microbial taxa and metadata (like health status) characterizing 

the environment of interest.  

 

1.7. Limitations of 16S rRNA gene amplicon analysis  

While 16S rRNA gene sequencing has the potential for great insights in microbiota 

composition, this technology bears some challenges. These include contaminations either from the 

sample (e.g., DNA derived from ingested bacteria of the food and not native to the gut), from the 

processing environment (e.g., aerosols carry DNA from one sample to another), chemicals for 

amplification and sequencing (e.g., some bacterial genera are known to grow in production pipelines 

for kit components (Klindworth, Pruesse et al. 2013), or from the sequencing itself (e.g., overlapping 

cluster causing misreading, index cross-talk, (MacConaill et al. 2018), and others. Filtering methods 

have been developed to determine and remove such contaminants from the data set. One of the most 
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commonly used methods, removes all sequence reads which appeared only once in the data over all 

samples (referred to as singleton removal) (Schloss, Westcott et al. 2009, Caporaso, Kuczynski et al. 

2010, Callahan, McMurdie et al. 2016). Nevertheless, this method highly depends on sequencing depth 

and on the number of samples included within one sequencing run as well as the used sequencing 

technology. As a consequence there has been a lot of confusion in the field about how many bacterial 

species can be detected in the human intestine based on sequencing, with values ranging from a few 

hundred to several thousand (Avershina and Rudi 2015, Clavel et al. 2016). Reference studies based 

on low-error amplicon analysis protocols or shotgun metagenomics suggested the detection of 150 to 

200 species in one individual sample, though this was based on sample size of <200 individuals (Qin et 

al. 2010, Faith et al. 2013). Therefore, a proper filtering must be considered for meaningful and 

trustworthy analysis of high throughput 16S rRNA gene amplicon datasets.  

Moreover, falsely detected OTUs (referred to as spurious OTUs) should be removed in order 

to exclude spurious taxa which are not part of the microbial ecosystem. Despite the widespread use of 

16S rRNA gene amplicon sequencing approaches, it is still unclear which thresholds are most suitable 

to remove contaminants of any sort. These spurious OTUs inflate the ‘species’ list with increasing 

sample numbers of a study and sequencing depth. Thus, benchmarking und validation of an analysis 

pipeline is important to generate reliable and reproducible outcomes.   
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2. Aims and objectives 

The aim of this work is the characterization of the human gut microbiota and its effect on metabolic 

health. In this study we analyzed three large-scale population cohorts with a total of 4,131 participants. 

The primary focus was to find associations of the bacterial composition of the gut with T2D. In addition 

to the compositional diversity of individuals’ gut microbiota, we identified robust diurnal oscillations 

in the faecal bacterial composition. We identified taxa with disrupted circadian rhythm and classified 

disease risk in individuals with T2D based on those taxa. We hypothesize that daytime-related 

oscillations of gut bacteria not only contribute to inter-individual variation, but also provide a link to 

metabolic health. 
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3. Methods 

In the following, the used population-based human cohorts and data sets are described. The 

pipeline for the 16S rRNA gene sequencing is explained in detail, including bioinformatic and statistical 

methods.  

 

3.1. Population-based cohorts 

Using three large human cohorts (KORA2013 and KORA2018, TwinsUK, and FoCus cohorts), two 

smaller ones (enable, FS cohorts) and longitudinal data from two individuals (S1, S2), a combined data 

set of 5,366 subjects (n = 6,434 samples) was assembled to describe the composition of human gut 

microbiota in this study. Additionally, artificial mock communities were included in this work.  

 

 Cross-sectional KORA2013 cohort 

The longitudinal population-based cohort KORA (Cooperative Health Research in the Augsburg 

Region) started in 1999 and was designed to investigate cardio-metabolic health, with the focus on 

diabetes. Fecal samples of 2,076 individuals were collected in year 2013 during the third follow-up 

period of the cohort (KORA2013). For the collection, participants were asked to use a sampling kit which 

included stool collection tubes and storing the samples in their household refrigerator as short as 

possible. The tubes have a spoon attached to the lid and 1-2 spoons of feces shall be collected. Each 

tube contains 5 ml stool stabilizer (Invitek DNA Stool Stabilizer, No. 1038111100). Participants were 

asked to either bring the samples personally to the study center or send it via mail. All samples received 

were stored at -80°C at the study center in Augsburg. A comprehensive data set on social-

demographical characteristics, risk factors profiles, dietary habits and medical history was ascertained 

amongst others. Detailed study design and methods have been published previously (Holle et al. 2005). 

100 stool samples from year 2013 (KORA2013) were excluded due to medication issues (e.g., antibiotics 

intake) and gut-related diseases (e.g., colorectal cancer). T2D and a prediabetic phenotype were 

defined for each participant of KORA2013 by oral glucose tolerance test (OGTT) or physicians-

confirmation and classified by WHO in 2013. Individuals diagnosed with Type 1 Diabetes were 

excluded. The investigations were carried out in accordance with the Declaration of Helsinki, including 

written informed consent of all participants. All study methods were approved by the ethics committee 

of the Bavarian Chamber of Physicians, Munich (KORA2013 from year 2013 EC No. 06068 and KORA2018 

from year 2018 EC No. 17040). The informed consent given by KORA study participants does not allow 

depositing of the data in public databases. However, data are available upon request by means of a 

project agreement (https://epi.helmholtz-muenchen.de/). Stool samples were paired-end sequenced 

on an Illumina HiSeq 2500 targeting the V3V4 region of the 16S rRNA genes performed by the ZIEL – 
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Core Facility Microbiome (Technical University of Munich, Freising) (Reitmeier et al. 2020). The 

Institute for Clinical Microbiology (IKMB) from Kiel (Germany), received DNA sample aliquots from the 

KORA2013 cohort and sequenced the V1V2 rRNA gene on an Illumina MiSeq machine in paired-end 

mode (Relling et al. 2018).  

 

 Prospective KORA2018 cohort 

Consecutive samples were collected after 5 years in KORA2018 of a subset of 699 individuals from 

the cross-sectional KORA2013 cohort. Inclusion criteria for the second sampling was based on age, i.e., 

participants older than 75 years were excluded. T2D was diagnosed based on HbA1c value (%), a 

measurement which determines the long-term average blood sugar level. An incident T2D case was 

defined as HbA1c < 6.5% in 2013 and HbA1c ≥ 6.5% in 2018. An OGTT was not available in year 2018. 

Sample preparation and sequencing of the V3V4 region in paired-end mode on an Illumina MiSeq was 

performed by the ZIEL – Core Facility Microbiome, as described above.  

A subset of 100 individuals (paired from KORA2013 and KORA2018) was selected for metagenomic 

shotgun sequencing. The dataset included incident T2D cases, persisting T2D cases and nonT2D 

controls, which were otherwise metabolically healthy. The shotgun metagenomic sequencing was 

performed by Prof. Paul O’Tool’s group at the School of Microbiology and APC Microbiome Ireland, 

University College Cork, Ireland. The group received sample aliquots of isolated DNA. The analysis of 

the shotgun data was performed mainly by Dr. Tarini Gosh and Dr. Eduardo Almeida, both University 

College Cork. 

 

 enable cohort 

The enable cohort, a cross-sectional study, was performed between February 2016 and February 

2018 in two centers, Freising and Nuremberg, Germany. The aim of the study was to recruit individuals 

of four age groups. Groups included 44 children from 3-5 years, 94 adolescents and young adults aged 

18-25 years, 205 adults aged 40 to 65 years (middle agers) and 160 older persons aged 75-85 years. A 

subset of 100 adults with an equal distribution of male and female were invited for another 

recruitment phase in 2018 (n = 357 samples of N = 100 subjects, from four sampling time points). 

Samples collection was conducted as described previously for the KORA2013 cohort. Stool sampling and 

measurements to evaluate metabolic syndrome took place at the cross-sectional recruitment phase as 

well as in the interventional phase (three consecutive sampling time points after 4 and after 12 

weeks). Stool samples were paired-end sequenced on an Illumina MiSeq machine targeting the V3V4 

region of the 16S rRNA gene performed by the ZIEL – Core Facility Microbiome as described above.  
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 Longitudinal sample collection of single subjects (S1 and S2) 

In a small longitudinal study (N = 2 subjects) multiple samples were collected over three years. 

Consecutive fecal samples (n = 58 samples) of a 52-year-old healthy male subject (S1) were collected 

over three years (July 2018 – February 2020). Multiple timepoint sampling was conducted in four 

phases (July-August 2017 n = 22 samples, December 2017 n = 12 samples, February-March 2018 n = 

15 samples and January 2020 n = 10 samples). Additionally, consecutive samples (n = 34 samples) from 

a 30-year-old healthy female individual (S2) were collected over two years (July 2018-February 2019). 

Sample collection and sequencing was performed as described above.  

 

 Human validation cohort (FS cohort) 

For a small human control cohort (FS cohort), participants (N = 9) were enrolled from Freising, 

Germany. They were asked to provide fecal samples including information about sampling time point. 

Samples were stored at 4°C. Native samples were portioned (2gr in each tube) in 5-ml stool collection 

tubes and diluted each with 600µl DNA stabilizer (Invitek DNA Stool Stabilizer, No. 1038111100). After 

homogenization, these aliquots were stored at -80°C. Sequencing was conducted as described above. 

 

 TwinsUK cohort  

In the TwinsUK cohort, N = 1,399 individuals, including N = 46 incident T2D cases as well as N = 

94 T2D cases that were classified using a combination of self-reported questionnaires as well as 

longitudinal glucose measurements were included. T2D was diagnosed based on blood glucose values 

and assignment of cases and controls was performed by Tim Spector’s group from King’s College, UK , 

who also conducted sampling and sequencing. The collection of fecal samples, DNA extraction, 

amplification of the V4 hypervariable region of the 16S rRNA gene (primers 515F and 806R), 

purification and pooling were performed as previously described (Goodrich, Waters et al. 2014). The 

pooled amplicons were sequenced using the Illumina MiSeq platform with 2×250bp paired-end 

sequencing. The raw sequencing data were accessed via the European Nucleotide Archive (ENA: 

PRJEB13747).  

 

 FoCus cohort  

The cohort originated from the Food Chain Plus (FoCus) project, running from 2011 to 2014. 

Sample collection and preparation were performed by the IKMB in Kiel, Germany as described 

previously (Relling, Akcay et al. 2018). DNA aliquots of 1,529 fecal samples were provided by the IKMB. 

The V3V4 region of the 16S rRNA gene was sequenced by the ZIEL – Core Facility Microbiome on an 
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Illumina HiSeq, otherwise as described above. Samples with low read counts (<5,000 reads) were 

excluded from data analysis as well as samples with missing information in BMI, HOMA index values 

and sampling time. In total 1,488 subjects were considered for the analysis. T2D was classified based 

on HOMA index which determines the insulin resistance by considering the fasting insulin and the 

fasting glucose (T2D: HOMA > 5.0 Stern et al. 2005). 

 

 Studies from public repositories for validation 

Data from two publicly available human cohorts were included in this work. Amplicon sequencing 

data were accessed by downloading FASTQ sequencing files from ENA archive. First, a longitudinal 

population-based cohort published by Flores et al. (2014) (N = 85 subjects, n = 255 samples) (EMBL 

accession number ERP005150-ERP005153). Second, a study published by Halfvarson et al. (2017), 

focusing on shifts in the human fecal microbiota over time in patients with IBD  vs. controls, of 1 - 10 

fecal samples for each individual (N = 137 subjects, n = 683 samples) (EBI accession number 

ERP020401) were included. 

 

3.2. Artificial microbial communities 

 Mock communities 

Two spiked mock communities were included in the analysis. Mock communities have a defined 

bacterial composition. The TUM-Mock was in-house prepared and consist of 13 strains (Table 1). The 

DNA of this community was diluted to 12 ng/ul and technical PCR replicates were taken for sequencing.   

Table 1 Composition of TUM-mock 

Genera Expected rel. abundance (%) 

Actinomyces 6.3 

Alistipes 3.5 

Bacillus 14.0 

Bacteroides 8.5 

Cellulosimicrobium 5.1 

Clostridium XVIII 14.2 

Enterococcus 13.3 

Enterorhabdus 4.3 

Flavonifractor 3.0 

Parabacteroides 6.8 

Pseudomonas 4.1 

Staphylococcus 11.4 

Acetatifactor 5.4 
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The second mock community was bought from Zymo (Zymo-Mock), compromising eight bacterial 

strains (Table 2). Of this pool, technical PCR triplicates were included for 16S rRNA gene sequencing.  

 

Table 2 Composition of synthetically spiked Zymo-Mock. 

Genera Expected rel. abundance (%) 

Bacillus 17.4 

Enterococcus 9.9 

Escherichia/Shigella 10.1 

Lactobacillus 18.4 

Listeria 14.1 

Pseudomonas 4.2 

Salmonella 10.4 

Staphylococcus 15.5 

 

Besides these two in-house used mock communities, we analyzed published datasets which included 

other mock communities (see Table 3). From those studies, raw sequencing data were downloaded 

from public repositories. There are differences in targeted V-region of the 16S rRNA gene as well as 

differences in number of bacterial strains being part of these mock communities (ranging from 10 to 

58 bacterial strains). These mock communities were included to increase the general number of 

communities from different sources, enabling observation of any possible bias in our in-house 

pipelines or the targeted V-region of the 16S rRNA genes. The 16S rRNA gene amplicon datasets 

generated concerning mock communities are available in the European Nucleotide Archive 

(www.ebi.ac.uk/ena) under study accession number PRJEB34431. 

 

 Gnotobiotic mice  

Gnotobiotic mice were colonized with minimal consortia of known bacteria. We created four 

gnotobiotic communities varying in number of used strains (4 to 12) (Table 4). For each community, 9 

to 12 mice were inoculated. Extracted DNA from feces were paired-end sequenced by targeting the 

V3V4 region of the 16S rRNA genes. Sample preparation and sequencing was performed by the ZIEL – 

Core Facility Microbiome on an Illumina MiSeq as described above. The 16S rRNA gene amplicon 

datasets generated for this part are available in the European Nucleotide Archive (www.ebi.ac.uk/ena) 

under study accession number PRJEB34431 (data from the ZIEL Core Facility Microbiome.

http://www.ebi.ac.uk/ena
http://www.ebi.ac.uk/ena
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Table 3 Mock communities used in the present study 

Name Seq. 

facilityb 

Gene region Replicates No. species No. raw reads No. sequences after 

processing 

Total no. taxad 

(no filtering) 

1st spurious taxond 

(% rel. abundance) 

Reference 

Mock-1 See ref. V4 1 27 153,841 140,397 432 0.007 
(Alanis-Lobato et al. 

2017) 

Mock-2 See ref. V4 1 58 593,868 578,569 761 0.439 
(Schirmer, Ijaz et al. 

2015) 

Mock-3 See ref. V4 1 21 1,012,097 453,215 1,081 0.031 
(Kozich, Westcott et al. 

2013) 

Mock-4 See ref. V4 1 14 169,516 159,352 417 0.020 (Tourlousse et al. 2017) 

Mock-5 See ref. V4 1 21 613,091 108,414 802 0.439 
(Kozich, Westcott et al. 

2013) 

Mock-6 See ref. V4 1 21 602,819 231,685 732 0.160 
(Kozich, Westcott et al. 

2013) 

Mock-7 See ref. V4 1 20 306,773 42,746 95 0.008 (Bokulich et al. 2013) 

Mock-TUM 1 V34 7 13 
25,640 ±  

,516 

19,882 ± 

8,163 
77 ± 15 0.130 ± 0.138 This study 

Zymo-Mock 

(cat. #D6300)a 
1 V34 7 8c 

67,465 ± 

31,752 

52,079 ± 

24,759 
177 ± 33 0.059 ± 0.026 This study 

          

In case of replicates, data are shown as mean ± sd 

The sequences and taxonomies of all species included in the respective Mocks are provided in Table 1 and Table 2  
a D6300 corresponds to an evenly distributed mixture of the microbes 
b For in-house generated data in this study:  ZIEL Core Facility Microbiome, TU Munich, Freising, Germany 
c The Mock community also includes two yeast species not considered here (i.e., 10 species in total). 
d All values refer to Operational Taxonomic Units (OTUs) clustered at 97% sequence identity, for which values refer to Amplicon Sequence Variants (ASVs).  
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Table 4 Gnotobiotic mouse communities used in the present study 

 
Gene 

region 
Replicates 

No. 

species 
No. raw reads 

No. sequences after 

processing 

Total no. OTUs (no 

filtering) 

1st spurious OUT 

(% rel. abundance) 
Reference 

GNOTO1 V3V4 6 7 28,706 ± 4,904 25,869 ± 4,494 66 ± 4 0.101 ± 0.014 This study 

GNOTO2 V3V4 9 12 30,261 ± 11,434 21,148 ± 8,313 172 ± 24 0.009 ± 0.004 This study 

GNOTO3 V3V4 6 6 30,444 ± 42,325 27,632 ± 3,563 85 ± 10 0.116 ± 0.016 This study 

GNOTO4 V3V4 7 4 25,217 ± 6,514 47,505 ± 6,106 68 ± 10 0.249 ± 0.041 This study 

In case of replicates, data are shown as mean ± sd 
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3.3. Sample processing for 16S rRNA gene sequencing 

Sample processing is divided into four main steps: DNA isolation, library construction by PCR, 

amplicon cleaning and dilution, and sequencing (Figure 2). 

 

 

Figure 2 Overview of steps for 16S rRNA gene sequencing. 

 

 DNA isolation methods and protocols 

The protocol used for the isolation of DNA from fecal samples is a modified version of Godon 

(1997). In total, 24 samples can be processed in parallel. Fecal samples (approx. 2 g in 5 ml stool 

stabilizer) are thawed for approximately 2 hours at room temperature (at 20°C – 22°C). Samples are 

vortexed until they are fully homogenized and 600 µl are transferred into a 2-ml screw cap tube 

containing 0.1 mm silica beads. To denature proteins, 250 µl 4 M guanidinium thiocyanate are added. 

As ionic surfactant, separating cellular components, 500 µl 5% N-lauroylsarcosine sodium salt is added. 

Samples are incubated for 60 min at 70 °C while shaking at 700 rpm. Remaining intact microbial cells 

are lysed by using a FastPrep-24 fitted with a CoolPrep adapter (filled with dry ice; program: 5 CY: 40 

s; 6.5 m/s for 3 rounds). To remove phenolic and other fecal contaminants, 15 mg polyvinylpyrrolidone 

are added. Samples are vortexed and centrifuged for 3 min at 15,000×g and 4 °C. The supernatant is 

transferred to a new 2-ml tube. RNase (final concentration of 10 mg/ml) is added and incubated 20 

min at 37 °C while shaking at 700 rpm. The DNA is purified using a silica-membrane based approach 
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following the manufacturer's instructions of the kit used (NucleoSpin gDNA Clean-up Kit, REF 

740230.250 Machery-Nagel). After DNA purification, nucleic acid concentrations are measured using 

a NanoDrop 2000 (ThermoFisher scientific). 

Besides the in-house protocol, the following kits were included for comparison (Supplementary 

table 1):  

• PSP Spin Stool DNA Plus Kit 

• OneStep™ PCR Inhibitor Removal Kit 

• DNA Clean & Concentrator™ -5 (DNA C&C) 

• NucleoSpin® gDNA Clean-up gDNA Clean & Concentrator™ -10 (gDNA C&C) 

• QIAamp DNA Stool Mini Kit 

The least kit was also used by an automatized DNA isolation pipeline provided by QIAGEN (QIAcube 

system No. 90012992). All kits were implemented as described in the manufacturer instruction.  

 

 Library construction and PCR  

The amplification was performed in a 2-step PCR approach. (Table 5). The selection of primer added 

in the 1st step Mastermix depends on the targeted region of the 16S rRNA gene (Table 6). Besides, two 

different polymerase were used in this work: Phusion HotStart polymerase (Thermo Freezer; Cat No.  

F-549L) and Q5 polymerase (NEB; Cat. No. M0491S). Finally, 3 µl of each DNA sample aliquot (with 12 

ng/µl) is mixed with 27µl of the Mastermix to perform the PCR (Table 7).  

 

Table 5 Mastermix  for 1st-step PCR 

Reagents Volume µl / sample 

Phusion® HF Buffer (without Dye)  6 

dNTPs (20µmol,) 0.6 

341F-ovh Primer 20µM 0.1875 

785r-ovh Primer 20µM 0.1875 

Phusion® High-Fidelity DNA Polymerase Hotstart  0.15 

DMSO 100% * 2.25 

Water (for molecular biology, DEPC-treated and filter-sterilized)  17.625 
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Table 6 Primer sequences used to amplify different V-regions for short amplicon 16S rRNA gene sequencing.  
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V12 27F 338R AGAGTTTGATYMTGGCTCA

G 

GCTGCCTCCCGTAGGAGT 57 Salter et al. (2014) 

V13 27F 534R AGAGTTTGATYMTGGCTCA

G 

ATTACCGCGGCTGCTGG 57 Walker et al. 

(2015) 

V34 341F 785R CCTACGGGNGGCWGCAG GACTACHVGGGTATCTAAT

CC 

55 Klindworth, 

Pruesse et al. 

(2013) 

V4 515F 806R GTGCCAGCMGCCGCGGTA

A 

GGACTACHVGGGTWTCTA

AT 

53 Caporaso et al. 

(2011) 

V46 515F 944R GTGCCAGCMGCCGCGGTA

A 

GAATTAAACCACATGCTC 53 Fuks, Elgart et al. 

(2018) 

V68 939F 1378R GAATTGACGGGGGCCCGC

ACAAG 

CGGTGTGTACAAGGCCCGG

GAACG 

58 Lebuhn et al. 

(2014) 

V79 1115F 1492R CAACGAGCGCAACCCT TACGGYTACCTTGTTACGAC

TT 

51 Edwards et al. 

(2007) 

 

Table 7 PCR cycling conditions for 1-step PCR. Rows in grey are performed for 15 cycles. 

 

Steps in °C Time Cycles 

Initial Denaturation 98 30 sec 1 

Denaturation 98 5 sec 

15 Annealing 55 10 sec 

Extension 72 10 sec 

Final Extension 72 2 min 1 

Hold 10 ∞  
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The Mastermix for the 2nd-step PCR includes forward and reverse index primer for sample barcoding 

with a double index (Kozich, Westcott et al. 2013). From the first PCR, 2 µl are mixed with 45.5 µl of 

the Mastermix, and 2.5 µl of each reverse index primer are added to conduct the PCR (Table 9). The 

2nd-step PCR was conducted twice, and the final products of both reactions are pooled. 

Table 8 Mastermix for 2-step PCR 

Reagents Volume in µl / Sample 

Phusion® HF Buffer (without Dye) 10 

dNTPs (20µmol, Bioline  BIO-39043) 1 

e.g. 341-ovh-HTS- SC501 Primer 20µM 0.313 

Phusion® High-Fidelity DNA Polymerase Hotstart * 0.2 

DMSO 100% * 1.5 

Water (for molecular biology, DEPC-treated and filter-

sterilized) 
32.487 

 

Table 9 PCR cycling conditions for 2-step PCR. Rows in grey are performed for 10 cycles. 

 

Steps Temperature Time Cycles 

Initial Denaturation 98 30 sec 1 

Denaturation 98 5 sec 

10 Annealing 55 10 sec 

Extension 72 10 sec 

Final Extension 72 2 min 1 

Hold 10 ∞  

 

 PCR purification and 16S rRNA gene sequencing 

PCR purification was performed with AGENCOURT AMPure XP Beads (Beckman Coulter according 

to the manufacturer’s instructions; Supplementary file 1) and was fully automatized by using a 

Beckman Coulter Biomek 4000 robot. DNA is measured by using a fluorimetry (Qubit measurement 

according to the manufacturer’s instructions). Amplicons were pre-diluted to a concentration of 2 nM 

and then diluted to a final concentration of 0.5 nM. The molarity of each sample was calculated based 

on measured Qubit concentrations and library size for the targeted rRNA region of the 16S gene (e.g., 

V3V4 = 572bp) as follows: 
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𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑛𝑀 =  
(𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑛𝑔/µ𝑙) 𝑥 106

(𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑙𝑖𝑏𝑟𝑎𝑟𝑦 𝑠𝑖𝑧𝑒 𝑖𝑛 𝑏𝑝 ∗ 660 𝑔/𝑚𝑜𝑙)
 

 

The average insert/amplicon size for V3V4 is 572bp. For sequencing the amplicon DNA was denatured 

first and diluted to 20 pM. A pool of all samples (about 300 to 350 per run) was created. A fresh 0.2 

nM NaOH solution and a 0.2 nM Tris HCl solution was prepared and 40 µl this solution was added to 

40 µl of the 0.5 nM amplicon pool. After vortexing and centrifuging for 1 min (280×g), 880 µl cooled 

HT1-Buffer was added. The resulting library was diluted to a final concentration of a 10 pM. To increase 

complexity, necessary for amplicon sequencing, PhiX DNA was added to the final library (Illumina PhiX 

Control v3, Cat. No. FC-110-3001) of which 600 µl were transferred either to the Illumina MiSeq 

cartridge v3 600 cycles or to an Illumina HiSeq cartridge Rapid Cluster Kit v2. 

 

3.4. Preprocessing of 16S rRNA gene sequencing data 

The Illumina machine generates FASTQ files. For each sample, one forward-read file (R1) and 

one reverse-read file (R2) is generated. Raw sequencing data were preprocessed using the IMNGS 

pipeline (Lagkouvardos, Joseph et al. 2016) with the following settings: trim score 5,  expected error 

rate of 1. In IMNGS, chimera are removed using UCHIME (Edgar, Haas et al. 2011) and the reads of de-

multiplexed samples are merged and clustered by 97% similarity into operational taxonomic units 

(OTUs) using UPARSE v8.1.1861_i86 (Edgar 2013). Spurious OTUs were filtered with different 

approaches including singleton removal or using a relative abundance cutoff of < 0.25%.  

 

 RHEA - Open-source R-based scripts for downstream analysis 

The downstream analysis pipeline was implemented in the programming language R (Figure 3). 

R is an open-source language, which runs on all conventionally used operating systems (Windows, Unix 

and MacOS). All scripts are fully independent from each other and are structured in a uniform style. 

The pipeline is available on the GitHub repository (https://github.com/Lagkouvardos/Rhea) 

(Lagkouvardos, Fischer et al. 2017). Notable contributors in the development of the pipeline are Neeraj 

Kumar who was involved in the implementation of the scripts and Dr Ilias Lagouvardos who reviewed 

the manuscript.   
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Figure 3 Rhea - R-based pipeline for the analysis of microbial 16S rRNA gene sequencing data. 

1.4.1.1. Normalization of reads 

Absolute read counts were normalized either by the minimum sum of reads observed within 

one sample or by a fixed normalization value of 10,000 reads.  

 

3.4.1.1. Alpha-diversity 

Alpha-diversity, the variation within one sample, was measured by either richness (number of 

observed OTUs) or Shannon effective counts (exponential function of Shannon index/bacterial 

diversity index). For the calculation of alpha-diversity a denoising threshold of 0.5 read counts per OTU 

is set, to remove low abundant OTUs which are probably not part of the community. 

 

3.4.1.2. Taxonomic classification 

Taxonomies of OTUs were classified according to RDP classifier (Wang, Garrity et al. 2007) and 

verified using other databases (SILVA (Quast, Pruesse et al. 2013), Greengenes (Yokono, Satoh et al. 

2018), BLAST (Altschul et al. 1990)). The cumulative relative abundance was calculated of all taxonomic 

levels (kingdom, phylum, class, order, family, and genus) for each sample by summing up the relative 

abundance values from different OTUs assigned to the same taxonomy.  
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3.4.1.3. Beta-diversity 

Similarity between samples was estimated based on a distance matrix using unweighted 

UniFrac (considering the phylogeny of sequences but without considering the abundance) and 

generalized UniFrac (considering the phylogenetic tree generated). For graphical illustration, 

projections of each sample in a two-dimensional space were used, either multidimensional scaling 

(MDS) plot or non-linear MDS (nMDS) plot. In addition, similarity was shown using samples as branches 

in a dendrogram. Significance between groups was determined by a permutational multivariate 

analysis of variances (adonis function of the vegan R-package) and p-values are corrected for multiple 

testing following Benjamini-Hochberg (Yekutieli and Benjamini 2001).  

 

3.4.1.4. Groupwise differential abundance analysis  

Differences in relative abundance of taxa and/or OTUs were determined by a Kruskal-Wallis Rank 

Sum Test for multiple groups and a Wilcoxon Rank Sum test for pairwise comparison. Differences in 

prevalence of taxa and/or OTUs were determined by a non-linear Fisher Exact test. P-values were 

corrected for multiple testing according to Benjamini-Hochberg correction. Changes over time were 

determined by a non-parametrical Friedman test and adjusted for multiple testing.  

To provide information about possible associations between OTUs/taxa and continuous variables 

of interest (e.g. blood values, age, BMI), a correlation and network analysis were performed. The 

analysis calculates pairwise correlations based on Pearson correlation coefficient including p-value as 

well as an adjusted p-value. A heatmap was generated to provide an overview of all correlations, color 

coded for negative and positive correlation, as well as for significance. A network of variables with a 

correlation above a certain cutoff was generated to illustrate multiple connections and to find possible 

cluster of strongly connected taxa/OTUs. 

 

 Advanced statistical analysis for population-based cohorts 

Effect modifier and confounder were determined by a permutational multivariate analysis of 

variances (adonis function of the vegan R-package). The explained variation of co-variables was 

determined by calculating R2 values and were considered as significant with a p-value ≤ 0.05. For the 

cumulative explained variation, all significant covariates were included in a multivariate model. Data 

were adjusted according to confounding factors (gender, age, BMI, physical activity, PPI, metformin, 

and vitamin D intake) as well as stratified according to phenotypical characteristics. De-novo clustering 

was based on Ward hierarchical clustering. The selected number of clusters was chosen according to 

the Calinski and Harabasz index and was performed with the R package NbClust v.3.0. The circular 
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sample trees were based on generalized UniFrac distances and generated by the online tool EvolView 

v2 (He et al. 2016). Taxonomic trees were generated by  Graphlan (Segata et al. 2013).  

A random forest model was used to classify binary outcome variables based on a combination of 

co-variables and microbial composition with a 5-fold cross validation by using randomForest from the 

R package randomForest v4.6-14. To receive a robust and generalizable classification model, the 

machine-learning algorithm was applied 100-times iteratively assigning randomly individuals to either 

the training (80%) or test set (20%). For the training set, a subset of equally distributed cases and 

controls was taken to train the model. The model was further validated on the 20% test set. Based on 

out-of-bag error rates and Gini index, the most important features were selected for each iteration 

using rfcv from R package randomForest v4.6-14. Features, which appeared in at least 50% of all 100 

random forest models, were considered as classification feature for the final model. Performance of 

the model was validated by several measurements generated by the R package performance v. 0.4.5. 

For each iteration, a received operational curve (ROC curves) with the AUC values was generated, as 

well as a precision – recall curve with the corresponding AUCPR showing the rate of positive predicted 

values among all true positives.  

For the illustration of the results, the mean values of the curves were used as well as all AUC. The 

F1 score and Matthews Correlation Coefficient are both providing information about the model’s 

prediction performance of the binary classifier (David Martin and Powers 2011, Chicco and Jurman 

2020). Additionally, a learning curve was implemented which shows the out-of-box error (OOB error) 

rate for different number of samples included in the training set, to provide information about over- 

or underfitting. We further generated a mixed effect random forest model (MERF) to evaluate the 

effect of possible confounding variables towards the classification. Feature selection and performance 

of the MERF model was implemented as in random forest model by the R-package MixRF v 1.0. To 

address the issue of compositional data in microbiome analysis we transformed the original data input 

(relative abundance) via i) centered log scaled and ii) paired log ratio of OTUs and repeated the random 

forest approach. A generalized linear model (GLM) for binomial distribution and binary outcome (logit) 

was generated using the previously selected features. Therefore, two approaches were followed. First, 

the model was tested in a nested 80% - training and 20% - test scenario as described in the previous 

section. To verify the importance of the selected features, a generalized linear model for control OTUs 

(randomly selected OTUs, equal number of OTUs as feature list) are implemented repetitively 100-

times. After validation of the model’s quality, another GLM was generated based on all individuals. 

Predictions and classifications of other cohort studies are all performed on the generated GLM. 

Therefore, it is necessary to determine the corresponding OTUs representing the features or the GLM. 

FASTA sequences from the GLM OTUs are aligned against all FASTA sequences from the other cohort 

using BLAST (Edgar 2010). Based on the highest sequence similarity the selected s-arOTUs are assigned 
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to the corresponding sequences of the prediction/classification dataset. Sequences with an identity of 

97%, coverage of 80% and an E value < 10-5 are considered as a hit. If there was no matching sequence 

available using the above thresholds, the best match is taken instead. Aiming to uniquely assign 

sequences to one reference sequence. A sequence is only allocated multiple times if no unique match 

above > 80% was available. The molecular species of the selected OTUs were further verified via 

EzBioCloud (Yoon et al. 2017).   

All models used in this work are described in the Supplementary Table 3 including information 

about binary classifier, included features, referred figures and performance. Scripts are integrated in 

the 16S amplicon shiny app Namco (online available in alpha version; 

https://exbio.wzw.tum.de/namco/ ) developed by the group of Dr. Markus List, Technical University 

Munich Chair of Experimental Bioinformatics.  

 

 Illustration and analysis of microbiota datasets for circadian rhythms 

A high-resolution time course was generated by merging samples taken between 5:00 am and 

24:00 pm in two-hour intervals, and a larger 4-hour interval at night from 00:01 am to 4:59 am to 

compensate for the low sample size in some groups during the nighttime points. The merged data 

points are illustrated using GraphPad Prism v6.01 (GraphPad Software) with the sample size of every 

groups per time point indicated below the data point in the individual graphs. To demonstrate the 

overall phase relationship and periodicity of all OTUs together, heatmaps have been generated using 

the online tool Heatmapper (http://www.heatmapper.ca). The raw data of each OTU were merged in 

the above-indicated intervals, sorted by the peak phase based on cosine-wave regression analysis 

(described below) and scaled in each row according to the highest abundance of the OTU. 

Statistical analyses were conducted with GraphPad Prism v6.01 (GraphPad Software) and the R script 

JTK_CYCLE v3.1.R using Rstudio v1.1.456 (Rstudio Inc.). To efficiently identify and characterize diurnal 

oscillations in large datasets, circadian variation was tested by fitting a cosine-wave equation:  

𝑦 = 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 + 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 ∗ cos(2 ∗ 𝜋 (𝑥 − 
𝑝ℎ𝑎𝑠𝑒 𝑠ℎ𝑖𝑓𝑡

24
)) 

or a double harmonic cosine-wave equation:  

𝑦 = 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 + (𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝐴 ∗ cos(2 ∗  𝜋 (
𝑥 − 𝑝ℎ𝑎𝑠𝑒 𝑠ℎ𝑖𝑓𝑡 𝐴

24
))) + (𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝐵

∗  cos(4 ∗ 𝜋 (
𝑥 − 𝑝ℎ𝑎𝑠𝑒 𝑠ℎ𝑖𝑓𝑡 𝐵

24
))) 

on alpha-diversity and relative abundance, with a fixed 24-h period. The goodness of fit was corrected 

for multiple comparisons and the significance was determined using an F-test. Results from the cosine- 

and harmonic cosine-wave regression were compared with a widely used rhythmicity detection 

algorithms JTK_CYCLE which employs a non-parametric algorithm detecting sinusoidal signals (Hughes 
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et al. 2009), whereby JTK presents the highest false negative rates (Hughes et al. 2010). Each p-value 

was Bonferroni-adjusted for multiple testing. A statistically significant difference was assumed when 

p-value ≤0.05. The high-frequency time sampling allowed the identification of diurnal-regulated 

microbiota with a high statistical power (Hughes, Hogenesch et al. 2010).   

The relative abundance of each OTU was assessed for a 24-h rhythmicity using the cosine-wave 

regression. OTUs which showed diurnal fluctuation were further analyzed for differential 24-h time-

of-day patterns using the Detection of Differential Rhythmicity (DODR) R packages (Thaben and 

Westermark 2016). Resulting DODR p-value were corrected for multiple comparisons and at the 

corrected p-value ≤ 0.05 significance level. 

 

 Analysis of associated functional pathways 

The analysis of the shotgun sequencing data was mainly performed by Dr. Tarini Gosh and Dr. 

Eduardo Almeida, School of Microbiology and APC Microbiome Ireland, University College Cork, Ireland  

The taxonomic and functional annotation of the shotgun fecal metagenomic datasets were 

performed using the metaphlan2 (Segata, Waldron et al. 2012) and HUMAnN2 (Franzosa et al. 2018) 

pipelines. Gene families detected using the HUMAnN2 approach were mapped to the KEGG pathway 

orthologs (Kanehisa and Goto 2000) using internal mappings within HUMAnN2. Psych R package 

v1.8.12 was used to compute the correlation between the OTU markers with the clinical markers and 

the KEGG pathways (Spearman correlation filtered with Benjamini-Hochberg corrected FDR ≤ 0.1). For 

the identification of the top disease-predictive pathways, we used an iterative random forest approach 

randomForest from R package randomForest v4.6-14, where we performed 100 iterations, each time 

taking 50% of all cases(from both 2013 and 2018) and an equal number of controls and tested the 

same model on the remaining 50%, again with an equal number of controls. Mean AUC and mean 

feature importance scores were computed across iterations using standard R functions. Results were 

further compared with the results of two published studies: a cohort of Qin et al. (2012) as well as a 

cohort of Beli et al. (2019). Pathways that were only detected in either cases, controls or had more 

than two-fold increase of representation in case or controls were identified as enriched.
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4. Results 

The first part of the result section focuses primarily on the validation of the 16S rRNA gene 

sequencing pipeline. Different methods and protocols for fecal sample preparation were compared 

and validated to set up a standard protocol for the preparation of stool samples for targeted amplicon 

sequencing. Preprocessing steps of raw sequencing data were critically evaluated and extensively 

tested to assure high quality data. 

In the second part, population-based cohort studies were conducted and analyzed. The three 

large population-based cohort studies are described and compared against each other, as well as 

longitudinal data sets evaluating the dynamic and stability of the gut microbiota in and between 

cohorts. Finally, the daytime-related changes in the bacterial composition of the gut was investigated. 

The aim of the analysis was to evaluate the impact of metabolic health, especially T2D, on the bacterial 

composition (either generally or during different daytimes) in order to obtain prognostic and 

diagnostic tools derived from the microbiota.  

 

4.1. Comparison of DNA isolations, polymerase chain reactions, and 16S rRNA 

gene sequencings 

 

 The influence of DNA extraction methods  

Several publications already showed that the sample preparation is one of the strongest 

influencing factors for the 16S gene rRNA amplicon sequencing pipeline (Berry, Ben Mahfoudh et al. 

2011, Claassen, du Toit et al. 2013, Wesolowska-Andersen, Bahl et al. 2014, Wagner Mackenzie, Waite 

et al. 2015). According to literature (see Introduction), the DNA isolation method seems to have a 

strong impact on the results. We tested seven different protocols in ten different settings, including 

one fully automated approach (see Methods, Supplementary table 1). Stool samples from eight 

human subjects (N = 8 subjects, n = 24 samples (technical triplicates) from the FS cohort were used to 

evaluate the intra – and inter individual effects for the different DNA isolations. First, the quality of the 

PCR product was evaluated by gel electrophoresis, yield (Figure 4) and purity was measured.  
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Figure 4 Gel electrophoresis of 2nd PCR products showing the targeted amplicon length for 16S rRNA gene 
sequencing. Obtained from DNA isolated with different methods.  

Top panel: Isolation methods 1 to 5 (ISO-1 – ISO-5). Bottom panel: Isolation methods 6 to 10 (ISO-6 – ISO-10) 
(compare to Supplementary table 1). Shown are PCR products after the second PCR. Missing products indicate 
insufficient amounts of DNA. L; ladder (3 µl): 100-bp ThermoDNA indicating the aspired size of 570 bp for the 
PCR product. 10 µl sample and 1 µl dye on a 1.5% agarose gel (150V for 30min).  

 

DNA isolation protocols producing insufficient amounts of DNA (Figure 4) were excluded in the 

following. Thus, fecal samples of the FS cohort (N = 8 subjects, n = 24 samples) were isolated using ISO-

4, ISO-5, and ISO-8. The DNA was sequenced on an Illumina MiSeq (paired-end) and analyzed using 

IMNGS and Rhea (see Methods) with standard settings. To determine the similarity of microbial 

composition within triplicates, the mean generalized UniFrac distance within one subjects was 

calculated (Table 5). The smaller the mean distance within triplicates, the higher the similarity between 

samples. Smallest intra-individual variation was observed when using ISO-4, while ISO-5 showed the 

highest intra-individual distance. Thus, ISO-4, a modified version of the protocol published by Godon 

(1997), had the highest similarity within each triplicate of DNA isolation conducted. Richness and 

Shannon effective counts were less influenced and showed good agreement with the majority other 

the other protocols tested. Considering usability, time and costs for consumables, ISO-4 was chosen as 

the standard DNA isolation method.  
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Figure 5 Compositional analysis of 16S rRNA gene sequencing data based on selected DNA isolation methods 
for the same samples.  

The different DNA isolation methods are indicated by different colors as shown in each panel. (A) Alpha-diversity 
for each sample (mean over duplicates) for three methods compared. (B) Boxplots are Shannon effective number 
of species (C) Comparison of intra-individual generalized UniFrac distances; significant differences between the 
methods are shown. 

 

 The impact of PCR cycles and polymerases on sequence quality and results 

For the validation of the PCR settings eight different combinations of cycles were tested for the 

2-step PCR, as well as two different polymerases. The aim was to minimize the number of observed 

artefacts and to increase the number of detected molecular species (i.e., OTUs). Therefore, samples 

from the FS cohort (N = 8 subjects) and samples from the NGS-Mock were isolated according to ISO-4. 

DNA was amplified with 5 to 20 cycles in the first PCR and 5 to 20 cycles in the second PCR in different 

combinations. PCR products were sequenced. Results were compared according to relative abundance 

of OTUs between samples. Cycle numbers resulting in similar relative abundance values were selected 

and further tested by using two different polymerases (Phusion HotStar and Q5). Using the mock 

community, the influence of PCR cycles on the number of true positives and false positives was 

validated. A cutoff of 0.25% (see below) was found to be a threshold, which separates spurious OTUs 

(e.g., contaminations, crosstalk between barcodes, etc.) from true OTUs. Thus, this filtering cutoff of 

0.25% was applied for the PCR-test conditions. The results showed that the number of observed OTUs 

differed between cycles and polymerase (Table 6).   

B 

C 

A 
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Figure 6 Influence of PCR reagents and number of cycles.  

Number of observed species for NGS-Mock. Two different polymerases are used for the analysis (brown = 
Phusion high fidelity, blue = Q5); varying cycle numbers for the first and second PCR are indicated. The number 
of bacterial species (13) present in the NGS-Mock is marked with grey bars.  

 

Compared to the original number of 13 species in the mock community, best results were generated 

when using 25 cycles in total and the Phusion polymerase (Table 6). 

To observe the number of false positives, an OTU table without filtering was generated. The highest 

fraction of the first false OTU was recorded. The fraction of the false positive with the highest amount 

varied between cycles (Table 10). However, for some combinations cycling or polymerases, few species 

were missed (grey area), while the number of false OTUs varied. The lowest number of false positives 

was observed with 15 and 10 cycles for the first and second step, respectively, and using Q5. 

Nevertheless, the relative abundance of the most prominent false positive was much lower with the 

same number of cycles but using the Phusion polymerase. 

Table 10 Appearance of artefacts with different polymerase and different number of cycles for 2-step PCR. 

Cycles 1-Cycle 2-Cycle Polymerase 
Rel. abundance of 
most prominent 

artefact 

No. of 
artefacts 

No. of observed 
species 

25 15 10 Phusion 0.013% 14 13 

25 15 10 Q5 0.025% 9 13 

25 10 15 Phusion 0.015% 17 13 

20 15 5 Phusion 0.013% 13 13 

20 15 10 Q5 0.020% 12 12 

20 10 10 Phusion 0.042% 18 10 

20 10 10 Q5 0.077% 34 10 

20 5 15 Phusion 0.022% 18 10 
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 Sample size, sequencing depth and number of reads 

Next, to evaluate the influence of sample numbers included in OTU table generation, samples 

from known subjects (N = 10 subjects from KORA2013) were integrated and combined with samples 

from different studies. The number of included samples ranged from 1,649 to 3,133 samples within 

one OTU table. With an increase in the total number of included samples, an increase in number of 

OTUs was observed for each of the ten subject samples. Thus, for the mentioned sample number 

range, the amount of observed OTUs approximately doubled within one individual resulting in a strong 

association with richness observed (Figure 7). The number of samples included in a study is influencing 

the results. This effect needs to be addressed while comparing results from different studies.  

 

 

Figure 7 The influence of sample size, generated OTUs and alpha-diversity. 

Grey bars indicate the number of samples included to generate OUT tables (x-axis to the right). Colored 
lines indicate the richness (i.e., number of observed ‘species’ as OTUs, A) or Shannon effective counts (i.e., 
bacterial diversity, B) for each sample of the 10 subjects. The color of the ten samples is indicated.   
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4.2. Appearance and origin of spurious OTU 

The aim was to find a relative abundance filtering cutoff for 16S rRNA gene sequencing data from 

stool samples to remove sequences which are not matching to any of the reference species. These  

falsely detected sequences are referred to as spurious OTUs. At first, the origin of spurious OTUs was 

investigated. Next, remaining amounts of spurious OTUs, were compared for different filtering 

methods. The following results shall be published in manuscript currently under peer-review 

(Reitmeier et al. 2020).  

 

 Origin of spurious OTUs  

To determine the origin of spurious OTU, >100,000 datasets were combined from 16S rRNA gene 

sequencing data available in IMNGS. Considering a total number of 108,881 samples (human n =  

46,153 samples; soil n = 29,864 samples; freshwater n = 13,977 samples; mouse n = 10,409 samples; 

marine n = 8,478 samples), a broad variety of different molecular species were observed appearing in 

these datasets. This variety suggested that contaminants are occurring within sequencing runs and are 

dependent on studies/samples sequenced in parallel. There seemed to be no artificial taxa commonly 

found in amplicon data. The majority of spurious OTU are from phyla Firmicutes, followed by 

Bacteroides and Proteobacteria. The taxa found are mainly derived from samples of human and mice. 

However, some spurious OTUs derive from soil or water samples and include mainly bacteria from the 

Pseudomonacae (pyhlum Proteobacteria).  

 

 Filtering cutoff for 16S rRNA gene sequencing data of the human gut microbiota 

Nine mock-communities (Mock) (Table 3) and four gnotobiotic communities (Gnoto) (Table 4) 

were analyzed to determine the highest relative abundance value of a spurious OTU. As well as the 

number of truly detected species for each community.  

The common approach to filter OTU tables is to remove singletons. Singletons are OTUs where 

only one single read over all samples is assigned. The results of this filtering approach are compared 

with results from an unfiltered OTU table. It showed that the number of spurious OTUs without filtering 

was 508 ± 355 OTU (min. 52; max. 1,081) per Mock (10 to 58 species present) and 105 ± 50 OTU (min, 

55; max. 215) per Gnoto (4 to 12 species present) ( 

Figure 8 A). There was no significant difference in the proportion of spurious OTU comparing the 

two methods (for Mock 50.8 vs. 64.3%,  P-value = 0.23; for Gnoto 57.5% vs. 65.7%, P-value = 0.70). It 

is important to mention that even without any filtering applied, not all species present in each 

community were detected. On average only 94.9% of the community members are detected. After 

applying singleton removal, the proportion of positive hits dropped slightly to 92.3% ( 
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Figure 8 A). Nevertheless, the number of spurious OTUs was still high after singleton removal and 

about 87% of all OTUs were contaminants. However, the cumulative relative abundance for such 

contaminants is generally low. For instance, spurious OTUs found in the gut community of gnotobiotic 

mice have a cumulative relative abundance of below 1%, suggesting that spurious OTUs only marginally 

influence the total community but inflate richness ( 

Figure 8 B). 

 

 

Figure 8 Determination of filtering thresholds using artificial communities of known composition in-vitro 
(Mock; N = 9 mock communities; n = 21 samples) and in mice (Gnoto; N = 4 different communities; n = 28 
samples).  

(A) Comparison of various standard filtering cutoffs regarding the percentage of spurious OTUs (i.e., those 
molecular species not matching sequences of the known species contained in the artificial communities). Lower 
boxplot shows the corresponding percentages of positive hits retained by the different filtering strategies; 
positive hits being defined as the reference sequences found in the respective amplicon datasets. (B) Example of 
the relative abundance distribution of total OTUs detected without filtering in the gut of a gnotobiotic mouse. 
The arrow indicates the position of the first spurious OTUs, all following OTUs being considered as having a high 
risk of being spurious (light grey bars).  

 

The relative abundance of the spurious OTU with the highest abundance an occurrence below 0.25%. 

Based on this result, a relative abundance-based filtering cutoff of 0.25% was suggested to remove 

most OTUs, which are not part of the community ( 
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Figure 9). Only one outlier, which appeared in an abundance above the recommended threshold, was 

observed and, thus was not removed.  

 

 
 

Figure 9 Determination of a 0.25% representative filtering threshold.  

Lower boxplot shows the corresponding percentages of positive hits retained by the 0.25% filtering strategies; 
positive hits being defined as the reference sequences found in the respective amplicon datasets. The purple 
lines on the y-axis indicate the consensus threshold of singleton removal. 

 

After applying the 0.25% cutoff, the number of spurious OTUs dropped significantly to 4.0% for Mock 

(compared to 58% for singleton removal; P-value < 0.001) and to 1.0% for Gnoto (compared to 62% 

for singleton removal; P-value < 0.001). By removing spurious OTUs, apparently only few low abundant 

but true members of the community are filtered out. However, most of the molecular species are 

retained without causing any significant differences in the final results compared to singleton removal 

(87.2% vs. 93.7% for Mock and 82.4 vs. 88.7% for Gnoto; P-value > 0.50). For Mock and Gnoto, a 

notable drop in the percentage of positive hits (8% - 25%) was observed. One true member of the 

microbial ecosystem was not detected due to a low relative abundance of this taxa ( 

Figure 9). This effect is due to the low number of microbial members (n = 4-12) per community, which 

does not play a role in natural stool samples.  
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Figure 10 Contaminants in ASV data sets. 

 (A) Percentage of spurious OTUs and positive hits for the determined filtering cutoff of 0.25% in mock and mouse 
communities. (B) Percentage of spurious OTUs and positive hits in the same reference communities using 
different filtering thresholds and the DADA2 pipeline for analysis based on Amplicon Sequence Variants (ASVs). 

 

Additionally to the OTU approach, the filtering cutoff of 0.25% was tested for ASVs (Callahan, Sankaran 

et al. 2016). In total, 42 ± 25 ASVs (min. 16; max. 98) for Mock (10 to 58 target species in theory) and 

14 ± 8 ASVs (min. 4; max. 25) for Gnoto (4 to 12 target species in theory) were found. In the ASV 

approach a marked decrease in spurious taxa was observed compared to OTU clustering, with an 

average of 8.6% ± 11.8 and 4.4% ± 6.4 spurious sequences after singletons removal for Mock and 

Gnoto, respectively. However, the DADA2 pipeline used to create the ASVs, cannot be used without 

any filtering, the default approach removes singletons. Comparing these data with the OTU approach 

showed comparable results. On average, the spurious ASV with the highest relative amount had a 

relative abundance of 0.10% ± 0.32 (removing singletons only). Applying the cutoff of 0.25% relative 

abundance completely removed spurious sequences (except for three samples with outliers), again 

causing a slight drop in positive hits ( 

 

Figure 10).  

 

 Filtering methods influence the results of within and between samples comparisons 

To estimate the influence of different filtering strategies on data not generated at our facility, 

two published studies were analyzed (Flores, Caporaso et al. (2014) and Halfvarson, Brislawn et al. 

(2017)). The introduced filtering cutoff of 0.25% was compared with filtering based on singleton 

removal. The results showed significant differences in richness (p-value < 0.001) and Shannon diversity 
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(p-value < 0.001). Thus, data preprocessing influences the outcome and conclusions drawn out of it. 

Both studies included here focused on the intra – and inter-individual variation of the human gut 

microbiota. Therefore, it was possible to compare alpha-diversity over time within one individual. One 

would expect that the variation in richness stays the same, independent of applied filtering method. 

The inter-quartile range (IQR) of richness calculated for all available time points within one individual 

showed major differences between filtering methods. Applying singleton removal resulted in a wider 

spread of richness and the microbiota composition seemed to be more dynamic compared to the 

0.25%-cutoff variation, where richness seemed to be comparable between samples within one 

individual. 

Besides the unequal distribution of intra-individual richness, a significantly smaller 

heterogeneity was observed after applying an abundance-based filtering cutoff (Flores, Caporaso et al. 

(2014): IQR = 28.0 ± 17.8 vs. 70.6 ± 34.1, p-value < 0.001; Halfvarson, Brislawn et al. (2017): IQR = 17.0 

± 3.2 vs. 49.0 ± 10.4, p-value = 2.5e-13). A similar trend was observed by comparing the results for 

Shannon effective numbers.  

In the study from Flores, Caporaso et al. (2014) and Halfvarson, Brislawn et al. (2017) distances 

were calculated using unweighted UniFrac distances. While there was a large intra-individual variation 

after singleton removal, a much greater similarity was observed in 0.25% filtered data, with an average 

of 0.31 compared to 0.60. This result could be due to the fact that low abundant OTUs were not 

excluded  after singleton removal. Thus, these low abundant OTUs were considered to be important 

species in the unweighted approach. Applying the generalized UniFrac distance on de-novo picked 

OTUs showed a similar intra-individual distance for both filtering methods. The average distance for 

the 0.25% filtering was 0.31 and for the singleton removal 0.23 and, thus reversed compared to the 

results obtained from the unweighted approach.  

In summary,  the first part of the results introduced a validated pipeline for sample 

preparation, processing and sequencing. The use of bioinformatic methods, in particular for filtering 

16S rRNA gene sequencing data, were intensively tested. The results obtained from this section were 

used for future analysis of population cohorts. 

 

4.3. The analysis of the fecal microbiota of population-based cohorts 

 

 Microbial composition of the human gut in KORA2013 

Stool samples of the KORA2013 cohort were sequenced using amplicons of the V3V4 region of the 

16S rRNA genes. The fecal bacterial ecosystem was globally dominated by the two phyla, Firmicutes 

and Bacteroides, making up to 91% of the composition (Figure 11 A). In total, the bacterial community 
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compromised 13 phyla with 101 genera. The most diverse phylum was Firmicutes, which could be 

separated into 11 families and 50 genera. The cumulative relative abundance is 56%. Second to 

Firmicutes was Bacteroides, which contains four families and 104 genera with a cumulative relative 

abundance of 35% (Figure 11 A). Eighteen genera were present in ≥90% of all individuals. Their mean 

cumulative relative abundance was 18.67%, which showed that most of the high abundant OTUs was 

prevalent in nearly all individuals (Figure 11 B). The 18 most prevalent OTUs belong to following 

genera: Bacteroides, Blautia, Agathobacter, Faecalibacterium, Fusicatenibacter, Clostridium, 

Agathobaculum, Anaerostipes, Anaerobutyricum, and Eubacterium. Only some of them were found to 

be part of the ‘core microbiome’ introduced by other studies, suggesting that there is no global ‘core 

microbiome’ shared by all humans (Turnbaugh, Hamady et al. 2009, Huse, Ye et al. 2012). As already 

shown in previous studies, the gut microbiota composition could be influenced by a variety of factors, 

such as geographical region, lifestyle, host genetics, and host health, all of which change the 

composition of the intestinal bacterial ecosystem and increase the inter-individual variation (Qin, Li et 

al. 2012, Le Chatelier, Nielsen et al. 2013, Falony, Joossens et al. 2016, Zhernakova, Kurilshikov et al. 

2016). 

 

 

Figure 11 Taxonomic composition of the KORA2013 cohort.  

(A) Relative abundances of phyla across the whole cohort. Samples are ordered according to increasing relative 
abundances of Firmicutes. (B) Taxonomic tree of the gut microbiota in 1,976 KORA2013 subjects. Colors indicate 
phyla. Taxonomic ranks are from kingdom (center) to genera indicated by the individual branches. Black bars 
indicate the prevalence of each genus, the name of which are shown if found in > 10% of individuals. 
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 Targeting different variable regions of the 16S rRNA gene  

All samples were examined targeting two different variable regions of the 16S rRNA genes, V1V2 and 

V3V4. Data for V1V2 had been sequenced with higher sequencing depth compared to V3V4, which 

resulted in an increased number of total OTUs found per sample (Table 11).  

 

Table 11 Sequencing depth of the 16S rRNA gene sequencing for different targeted regions and different cohort 

studies. 

 16S rRNA gene 
sequencing 2013 

(V3V4) 

16S rRNA gene 
sequencing 2013 (V1V2) 

16S rRNA gene 
sequencing 2018 

Samples wo resequencing 2,186 2,135 900 

Average no. reads 87,655 149,209 29,880 

Max. reads 211,648 380,092 60,141 

Min reads 16 72 7,363 

Sum all reads 187,144,068 3,185,262,516 26,892,897 

Samples re-sequenced 207 not re-sequenced not re-sequenced 

Average no. reads 145,328   

Max reads 581,380   

Min reads 36,164   

Sum all reads 300,083,040   

Samples incl. 
resequencing** 

2,137 2,135 900 

Average no. reads 99,386 149,209 29,880 

Max reads 581,380 380,092 60,141 

Min reads 36,164 72 7,363 

Sum all reads 212,289,588 3,185,262,516 26,892,897 

Mean sequence quality 
score (phred score) 

QR1 = 35  

QR2 = 36 

QR1 = 32 

QR2 = 33 

QR1 = 36 

QR2 = 38 

Mean error rate QR1 = 0.00032 

QR2 = 0.00025 

QR1 = 0.00063 

QR2 = 0.00032 

QR1 = 0.00025 

QR2 = 0.00016 

Number OTUs 2,089 2,383 1,695 

** removing samples with low read counts (< 4,700) 

 

Comparing the taxonomy targeting the V1V2 and the V3V4 region showed differences in the overall  

bacterial composition. However, similar to V3V4, the two dominant phyla are Firmicutes (mean rel. 

abundance 54%) and Bacteroides (mean rel. abundance 31%) also for V1V2. In contrast, Proteobacteria 

seemed to be more abundant when targeting V1V2.  
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In total, for both target V-regions of the 16S gene the same 90 genera were detected. Out of these, 27 

genera  were significantly different in their relative abundance between V1V2 and V3V4 (Figure 13, 

adj. p-value ≤ 0.05). Overall, 11 taxa, e.g. Bifidobacteria, were absent in V1V2, but 48 genera were only 

found when targeting this V-region. Overall, highest differences were observed for the two phyla 

Actinobacteria and Proteobacteria.  

A B 

Figure 12 Taxonomic composition of the KORA2013 cohort targeting the V1V2 region. 

(A) Relative abundances of phyla across the whole cohort. Samples are ordered according to 
increasing relative abundances of Firmicutes. (B) Taxonomic tree of the gut microbiota in 1,976 
KORA subjects. Colours indicate phyla. Taxonomic ranks are from kingdom (centre) to genera 
indicated by the individual branches. Black bars indicate the prevalence of each genus, the name of 
which are shown if found in > 10% of individuals. 
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Figure 13 Taxonomic differences between V1V2 and V3V4 V-region of the 16S rRNA gene.  

Taxonomic differences targeting the V1V2 or the V3V4 region of the 16S rRNA gene. Taxonomies are grouped 
according to taxonomic level (phyla level on the top, genus level on the bottom). Same order applies for the 
presence (black) and absence (white) plot. Colors are groups of taxonomies form the same phyla level. Grouped 
by taxonomic level, the differences between V3V4 (first row) and V1V2 (second row) in presence/absence (black 
and white). Taxonomies were ordered according to phyla level and were color-coded respectively.  
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 Intra-individual diversity and composition as reference marker for health 

Independent of the targeted V-region, a large inter-individual variation was observed. This 

variation resulted in a broad distribution of the main phyla Firmicutes and Bacteroides, ranging from 

10.62% to 94.73% for Firmicutes (F) and 0.04% to 84.09% for Bacteroidetes (B), respectively. One 

descriptive marker of the gut microbiota is the F/B ratio, which had provoked a lot of controversy in 

the past. However, previous studies suggested a decrease of the F/B ratio in patients with obesity 

(Backhed, Ding et al. 2004, Ley et al. 2005). In KORA2013, the average F/B ratio was 1.6 for V3V4 (average 

F/B ratio V1V2 = 1.7), but with a large variation between individuals (Figure 14 A). Further, a large 

variation was observed for richness and the Shannon effective number of species. With an average 

richness of 381 ± 77, most individuals fall within the range of 338 and 437 assigned species, yet not 

following a normal distribution (Shapiro test < 0.05). Based on Shannon effective number, the diversity 

within an individual compromised on average 188 ± 37 species and the distribution was skewed to the 

right, and thus not normal distributed among the cohort (Figure 14 B). Again, the comparison of the 

two targeted V-regions for two samples of one individual showed differences in the alpha-diversity 

without a correlation to richness or Shannon effective number of species (Figure 14 C). The diverse 

alpha-diversities observed for either V1V2 or V3V4 within one individual made it difficult to conclude 

anything about host health based on richness. The latter was shown to be an early and common 

markers for metabolic health (Stern, Williams et al. 2005, Gillies, Lambert et al. 2008, Wu, Ding et al. 

2014, Skyler, Bakris et al. 2017).  
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Figure 14 Compositional differences between targeted V-regions.  

(A) The ratio of Firmicutes (purple) and Bacteroides (green) is shown for targeting the V1V2 (grey) and the V3V4 
(brown) V-region. Barplots are sorted according to decrease in F/B ratio for V3V4. Even with a comparable mean 
F/B ratio of 1.6 and 1.7 the variation in V3V4 is larger. (B) Alpha-diversity of the fecal microbiota in KORA2013. 
Richness (left; 384 ± 77) and Shannon effective counts (right; 118 ± 37), which were both not normally distributed 
across the whole cohort (Shapiro test < 0.05). (C) Differences in alpha-diversity between V1V2 (grey) and V3V4 
(brown) without correlation for one sample between the two V-regions.  

 

 Clustering of individuals with similar microbial composition  

Individuals of the KORA2013 cohort were grouped according to similar gut microbiota 

composition using on an unsupervised clustering approach. The optimal number of clusters is defined 

by forming well separated clusters with maximal differences. The applied generalized UniFrac 

distances between samples was determined by Calinski Harabasz index  (Calinski and Harabasz 1974). 

Based on this index, individuals were assigned to three distinct clusters (Figure 15). C2 was the largest 

cluster (N = 981 subjects) and is significantly dominated by the genus Ruminococcus. The second 

largest cluster was C1 (N = 744 subjects) with a higher relative abundance of Bacteroides. The smallest 

cluster C3 (N = 249 subjects) contained more Prevotella. Besides these three genera each cluster was 

also characterized by a unique higher relative abundance of other genera. Nevertheless, the above 

mentioned three genera where previously shown to be part of the three main genera in the concept 

of ‘enterotypes’ (Arumugam, Raes et al. 2011, Wu, Chen et al. 2011, Costea, Hildebrand et al. 2018). 

Despite, this terminology should be used carefully since three genera cannot describe the complexity 

of a complete microbial ecosystem. It is yet unclear, if on a global scale three ´enterotypes´ with the 
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mentioned three genera prevail. However, the microbial diversity of individuals within C2 was 

significantly higher compared to C1 and C3, while C3 was the one with the lowest bacterial diversity 

(Figure 15 B). As already mentioned in the previous section, the bacterial diversity of a sample was 

assumed to be a marker reflecting individuals health. Nevertheless, we did not observe any correlation 

between a reduced richness and an increased disease status (Figure 15 A). 

 

 

 

Figure 15 Homogeneous distribution of metabolic health among the cohort. 

(A) Beta-diversity of the fecal microbiota in KORA2013. The dendrogram shows similarities between microbiota 
profiles based on generalized UniFrac distances between 1,976 subjects represented by individual branches. 
Unsupervised hierarchical clustering identified three main clusters of individuals (grey-scale next to branches). 
Individual taxonomic composition at the phylum level is shown as stacked bar plots around the dendrogram and 
follows the color code as in panel A. Bars in the outer part of the figure indicate disease status: first ring, Diabetes 
status (red, T2D; orange, Prediabetes ; no color, nonT2D); second ring, cancer (blue); third ring, obesity (grey, 
BMI ≥ 30); fourth ring, cardiovascular diseases (green). (B) Differences in alpha-diversity between the de-novo 
clusters from panel A. (C) Differences in relative abundances of the three genera Bacteroides, Ruminococcus and 
Prevotella for the three microbiota clusters as in A. P-value < 1∙10-5. 
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In order to understand if dietary habits possibly contribute to the differences in bacterial composition, 

its association with the three cluster was further analyzed. The general intake of macronutrients 

showed no significant differences between the clusters. Based on a 24-h food recall, the subjects were 

grouped in ‘non-vegetarian’ and ‘possible-vegetarian’, since C1 was previously characterized to be 

associated with intake of animal products (Hildebrandt, Hoffmann et al. 2009, Costea, Hildebrand et 

al. 2018). However, no variable clearly differentiated between these two groups. Thus, we classified 

those individuals that denoted to have eaten animal products into ´non-vegetarian´ (N = 1,496 

individuals). Individuals having eaten no animal products in the last 24 h were assumed to be ´possible-

vegetarian´, (N = 463 individuals). However, we could not detect a significant enrichment of individuals 

harboring C1 for the ´non-vegetarian´ group. Further, we could not find any link between diet and the 

cluster found. At this stage, the underlying reason for the stratification of individuals into three major 

clusters in KORA2013 remains unexplained. Still, even with limited knowledge, an unsupervised 

clustering approach should be considered when studying the human gut microbiota composition, since 

it could be an important factor for an individual’s response towards medical or dietary interventions.   

 

 The impact of environmental factors on the gut microbiota composition  

Previous studies have shown that factors, such as lifestyle, health, physiology, medication and 

genetics are responsible for differences in the bacterial composition of the gut (Qin, Li et al. 2012, Le 

Chatelier, Nielsen et al. 2013, Falony, Joossens et al. 2016, Pedersen, Gudmundsdottir et al. 2016, 

Zhernakova, Kurilshikov et al. 2016, He, Wu et al. 2018). Thus, we wanted to understand which factors 

cause the large inter-individual variation observed in KORA2013. Based on a multivariate permutational 

analysis of the cohort’s similarity, we determined several variables that were significantly associated 

with the microbial diversity and calculated their contribution towards explained variation. In total, 

9.1% of the bacterial composition could be explained by the mentioned factors, of which ‘physiology’ 

explained most of it (4.72%), followed by ‘lifestyle’ (2.30%), ‘medication’ (1%), and ‘health’ (1%). Thus, 

the gut microbiota seems to be more influenced by difference in lifestyle and physiology than on health 

(Figure 16 A). In addition, some of the variation is explained by environmental factors which were not 

directly connected to the human gut e.g., geographical region. Results of a larger Chinese population-

based study already showed that there is a strong influence due to the place of residence, explaining 

around 9% of gut bacteria variation (He, Wu et al. 2018). In contrast, the KORA2013 cohort was regionally 

restricted to a single city and its outskirts in Southern Germany, Augsburg. Still, a significant association 

to ‘geographical region´ was observed. Overall, 0.9% of the microbial composition was explained by 

the circumstance if an individual lives within or outside the city (Figure 16 B). This resulted in a small 



 THE FOCUS COHORT 

 

55 

 

shift in phyla distribution with a decreased abundance of Firmicutes and a slight decrease in 

Bacteroides in rural areas.  

 

 

 

Figure 16 Influence of environmental factors in KORA2013   

(A) Explained variations in fecal microbiota composition by covariates. All variables shown had a significant 
influence (P-value ≤ 0.05) displayed as proportions of explained variations based on R2 calculated by multivariate 
analysis of Bray-Curtis dissimilarity. (B) Geographical map of the city of Augsburg and its rural area. Subjects are 
grouped according to their place of residence. The pie charts show taxonomic distributions at the phylum level 
in individuals living outside (rural) or in the city. 

 

Yet, one factor turned out to be important, but has been overlooked so far. The time of defecation 

significantly contributes to observed differences in the overall microbiota composition. Based on this 

finding, we started to study the diurnal rhythmicity of the gut microbiota in 1,943 individuals to better 

understand, how the observed microbial composition is influenced by sampling time (see below 

Chapter 4.4).  

 

 The FoCus cohort  

In addition to the KORA cohort, we also analyzed the FoCus cohort (Food Chain Plus) from the 

Northern part of Germany. The recruitment for FoCus started in 2013 and included the collection of 

biological material and acquisition of phenotypical characteristics from 1,529 individuals. From the 

stool samples, 16S rRNA gene sequencing was conducted, targeting the V3V4 region. Isolated DNA 
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from FoCus was provided by Andre Franke’s group from the Institute of Clinical Molecular Biology at 

Christian-Albrechts-University of Kiel. For 1,488 samples, sufficient high quality reads were obtained 

(i.e., excluding samples with low quality reads and low overall number of reads). Of note, results from 

the cohort are published by Relling, Akcay et al. (2018). 

4.3.6.1. Taxonomic description of the fecal microbiota from the FoCus cohort  

Taxonomic analysis of bacteria contained in the stool samples showed a similar distribution of 

the two main phyla Firmicutes (51.28%) and Bacteroides (36.85%) as already seen in the KORA2013 

cohort, which corroborated a large inter-individual variation between all samples.  

 

 

Figure 17 Taxonomic composition of the FoCus cohort based on phyla level.  

Relative abundance values are order according to an increase in Firmicutes. The stacked barplot on the left 
shows the mean relative abundance.  

The number of observed OTUs and the diversity within one sample were comparable to the results 

obtained from KORA2013. For instance, the number of observed OTUs and diversity was not normally 

distributed (Shapiro test p-value < 0.0001). However, the overall diversity was higher in FoCus 

compared to KORA2013, suggesting that there are differences between Northern and Southern 

Germany.  
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Figure 18 Alpha-diversity in FoCus cohort.   

Left histogram shows the distribution of richness. Light colors bars are the 25%-quartile and the 75%-quartile. X-
axis shows the number of observed OTUs and the y-axis refers to the number of observed individuals.  

A phylogenetic tree, based on generalized UniFrac distances between individuals’ microbiota, showed 

some differences in the taxonomic distribution compared to the KORA2013 cohort. Performing an 

unsupervised clustering also generated three distinct clusters as seen in the KORA2013 cohort. Each of 

these cluster was dominated by either Prevotella, Bacteroidetes or Ruminococcus and thus highlights 

again the presence of microbiota driven cluster formation. While in KORA2013 the richness was highest 

in C2 (associated with Prevotella), in FoCus the richness was highest in C3 (associated with 

Rumincoccus). A similar trend was observed for Shannon effective numbers. Next, differences in the 

number of assigned individuals within one cluster were found between KORA2013 and FoCus. As for 

KORA2013, cluster C2 associated with Prevotella was the largest with N = 786 individuals, while the other 

two cluster contained more similar numbers (C1, N = 390 subjects; C2, N = 300 subjects).  
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Figure 19 Homogeneous distribution of metabolic health among the FoCus cohort. 

(A) Beta-diversity of the fecal microbiota in FoCus. The dendrogram shows similarities between microbiota 
profiles based on generalized UniFrac distances between 1,488 subjects represented by individual branches. 
Unsupervised hierarchical clustering identified three main clusters of individuals (grey-scale next to branches). 
Individual taxonomic composition at the phylum level is shown as stacked bar plots around the dendrogram and 
follows the color code as in panel A. Bars in the outer part of the figure indicate disease status: first ring, Diabetes 
status (red, T2D; grey, Prediabetes; no color, nonT2D); second ring, obesity (purple, BMI ≥ 30). (B) Differences in 
alpha-diversity between the de-novo clusters from panel A. Differences in relative abundances of the three 
genera Bacteroides, Rumincoccus and Prevotella for the three microbiota clusters as in A. P-value < 1∙10-4. 

 

4.3.6.2. The impact of factors influencing the bacterial composition of the gut 

In the FoCus cohort, 26 out of 56 co-variables (e.g., lifestyle, physiology, medication, and 

disease) showed a significant association with the observed microbial composition, explaining 5.38% 

of the differences in bacterial composition (Figure 20). Of those, ‘disease’ with the variables 

‘hypertension’ and ‘medication’ explained 2%. ‘Lifestyle’ and ‘physiology’ contributed equally to the 

total microbial variation. The most important variables was found to be associated with ‘lifestyle’ were 

‘BMI’ and ‘type of recruitment’ (i.e., individuals were either selected by the clinic or based on resident 

registration). As already observed in KORA2013, the time of sampling significantly contributed to the 
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total bacterial variation of the human gut microbiota in FoCus. This observation corroborated the 

hypothesis that considering sampling time is an important factor for the analysis of the gut microbiota 

diversity.  

 

Figure 20 Influence of environmental factors in the FoCus cohort. 

Explained variations in fecal microbiota composition by covariates. All shown variables have a significant 
influence (p-value ≤ 0.05) displayed as proportions of explained variations based on R2 calculated by multivariate 
analysis of Bray-Curtis dissimilarity.  

Of note, the abundance of Tenericutes was reduced compared to KORA2013 (Figure 19 A). In KORA2013, 

a cluster of individuals with higher abundances of Tenericutes was identified (Figure 15 A), but not in 

the FoCus cohort. Overall, both population-based cohort studies showed similar results in the 

taxonomic distribution and a large inter-individual diversity with minor differences in the relative 

abundance of the two phyla Tenericutes and Verrucomicrobia. Most co-variables significantly 

associated with differences in the gut microbiota composition overlapped between the two cohort 

studies. The reduced global impact of effect modifiers in FoCus compared to KORA2013 can be explained 

by a lower number of co-variables available assessed for FoCus. Nevertheless, the hypothesis that 

sampling time (e.g., defecation or circadian rhythm) influenced the gut microbiota was strengthened. 
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 The bacterial composition and influencing factors in the enable cohort  

The enable cohort is a smaller cohort with only healthy participants recruited in Freising, 

Gemany. The analysis of 499 individuals’ stool samples showed a large variation in each personal gut 

microbiota (Figure 21). The mean cumulative relative abundance of the two major phyla Firmicutes 

and Bacteroidetes contributed approximately 90% to the overall composition. The abundance of 

Firmicutes ranged from 27.41% to 84.39% over the whole cohort. For Bacteroidetes a minimum 

relative abundance of 7.58% and a maximum of 69.80% was found (Figure 21).  

 

 

The large variation between samples was also reflected in richness, where on average 385 ± 85 OTUs 

were observed per individual. The bacterial diversity was 99 ± 31. Stratifying the cohort according to 

age showed no significant differences in phyla distribution between the four age-bins formed, even 

though, AGE1 had less Firmicutes and more Bacteroides compared to the other groups (Figure 21 B). 

Even though we did not observe obvious differences in taxonomic composition between age groups, 

age was among the most significant variables explaining 0.6% inter-individual variation (Figure 22). 

Nevertheless, 16% the observed taxonomic diversity of the enable cohort could be explained by co-

variables (Figure 22). Most of these variables were related to blood-derived characteristics, e.g., blood 

cell count, hemoglobin values or disease-marker of the blood (e.g., ferritin index, uric acid) or 

hormones detected in blood (e.g., triiodothyronine, thyroxin). In total, ‘physiology’ explained nearly 

11% of the variation, while 3.89% are explained by ‘disease’ and 3.85% by variables such as ‘diet’, 

‘occupation or sleeping pattern’.  Since the cohort recruited healthy individuals only (i.e., no apparent 

illness), ‘medication’ was no significant co-variable. Of note, despite persons with metabolic health 

Figure 21 Taxonomic distribution on phyla level. 

Taxonomic tree of the gut microbiota in 499 enable subjects. Colours indicate different phyla. Taxonomic ranks 

are from kingdom (centre) to genera indicated by the individual branches. Black bars indicate the prevalence of 

each genus, the name of which are shown if found in > 10% of individuals. Right diagram shows the cumulative 

relative abundance (y-axis) for the whole cohort plotted per sample (x-axis) ordered according to increase in 

Firmicutes. The four stacked barplots show the mean relative abundance of phyla grouped by age.  
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syndromes and other severe diseases had been excluded from the cohort, some significant variables 

related to disease biomarkers, such as thyroxin (thyroid), uric acid (kidney), and insulin (Type 2 

Diabetes) were found to contribute the observed taxonomic variation. Comparing the KORA2013 effect 

modifiers with the enable effect modifiers showed some overlaps. Noteworthy, ‘time of defecation’ 

appeared again as a significant co-variable. Additionally, the dichotomous variable ‘wake-up type’ (i.e., 

if someone gets up with or without an alarm clock) showed some influence; probably because it is also 

associated with the circadian rhythm.  

 

 

Figure 22 Explained variations in fecal microbiota composition by co-variates.  

All variables shown had a significant influence (p-value ≤ 0.05) displayed as proportions of explained variations 
based on R2 calculated by multivariate analysis of Bray-Curtis dissimilarity 

 

As seen in the previously described cohorts, unsupervised clustering of generalized UniFrac distances 

for microbial diversity showed three distinct clusters. Each cluster is dominated by either Bacteroides 

(C1), Ruminococcus (C2) or Prevotella (C3) (Figure 23 A). Tenericutes (dark blue), Proteobacteria 

(yellow), and Verrucomicrobia (light blue) had higher abundances in C2, which could not be detected 

in the other two clusters and was only present in a few individuals there (Figure 23). In enable, richness 

and bacterial diversity were lower in C1 compared to the other two clusters (C1 mean richness = 319 

± 61, C1 mean Shannon effective number = 76 ± 21). However, in enable, a significant imbalance in the 

distribution of age groups among the cluster was observed. Age was higher in C2 (mean age = 54 ± 24), 

which was also the cluster with the highest bacterial diversity observed (mean Shannon effective 

number = 115 ± 26). C1 is dominated by younger participants, there is a higher proportions of 

individuals in AGE3 and AGE4 in C2 and C3. Thus, age seems to have an impact on microbial 

composition for healthy individuals (Table 12). 
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Table 12 Microbial associated clusters and their main descriptor found in a healthy population-based cohort. 

 C1 C2 C3 P-value 

No. of individuals 127 294 72  

Male (%) 49% (N = 63) 47% (N = 139) 63% (N = 46) 0.040 

BMI 26.53 ± 4.68 25.71 ± 4.20 26.61 ± 4.89 0.035 

Obesity    0.094 

BMI < 30 78% (N =98) 83% (N = 53) 74% (N = 245)  

BMI > 30 22% (N = 29) 17% (N = 19) 26% (N = 49)  

Age 49 ± 18 56 ± 20 57 ± 21 0.0057 

Age groups    0.0012 

AGE1 12% (N = 15) 6% (N = 18) 15% (N = 11)  

AGE2 22% (N = 28) 18% (N = 52) 16% (N = 12)  

AGE3 48% (N = 61) 39% (N = 114) 36% (N = 26)  

AGE4 18% (N = 23) 37% (N = 110) 33% (N = 23)  

Richness 319 ± 61 416 ± 66 417 ± 62 0.008 

Shannon effective 76 ± 21 115 ± 26 92 ± 29 0.006 

 

Alpha-diversity between age groups was significantly different. Similar to results from previously 

published studies, which observed an age related shift in diversity (Yatsunenko et al. 2012, Buford 

2017, Stewart et al. 2018). However, a reduction in richness and Shannon diversity observed in children 

or elderly (both are extreme age groups), could not be confirmed in the enable cohort. Nevertheless, 

the enable cohort showed a continuous increase in richness correlating with age, also for the elderly. 

Some genera showed significant differences in their relative abundance with increasing age, but only 

with few overlaps to other studies. Most of these taxa e.g., Fecalibacterium prausnitzii, Roseburia or 

Dorea, had been linked to metabolic health but were not found to be age associated.  
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Figure 23 Sample tree of the cross-sectional cohort grouped according to age and BMI. 

(A) Beta-diversity of the faecal microbiota in the cohort. The dendrogram shows similarities between microbiota 
profiles based on generalized UniFrac distances between all subjects represented by individual branches. 
Unsupervised hierarchical clustering identified three main clusters of individuals (grey-scale next to branches). 
Individual taxonomic composition at the phylum level is shown as stacked bar plots around the dendrogram and 
follows the colour code as in panel A. Bars in the outer part of the figure indicate age group, distribution of gender 
and BMI. (B) Differences in relative abundances of the three genera Bacteroides, Ruminococcus and Prevotella for 
the three microbiota clusters as in A. P-value < 1∙10-5. (C) Differences in age and BMI as well as in alpha-diversity 
between the de-novo clusters from panel A. 

A B 
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 Longitudinal studies  

Several studies already showed that there is strong inter-individual variation of the gut 

microbiota composition (He, Wu et al. 2018). Only very few studies have looked at changed of the 

observed bacterial diversity overtime within one individual. For instance, Halfvarson, Brislawn et al. 

(2017) have shown that disease was an impact on intra-individual variation while Flores, Caporaso et 

al. (2014) also showed that medication and environmental changes affect the composition. Since some 

individuals within KORA2013 have been resampled, prospective data from KORA2018 was used for multi-

timepoint comparison. Additionally, four sampling timepoint of a subset from the enable cohort as 

well as a longitudinal dataset from two individuals over three years were analyzed. 

 

4.3.8.1. Prospective KORA2018 cohort  

Part of the KORA2013 cohort was invited again after 5 years. Inclusion criteria for the prospective 

data collection was based on age (49-86 years) and in total 900 subjects were re-analyzed. Thus, the 

prospective data should reflect the development of the human gut microbiota over a 5-year period 

and its association with age and health. Finally, 699 subjects provided samples in year 2013 and year 

2018, resulting in 1,398 samples examined here (Figure 24).  
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To identify possible cohort bias (i.e., systematic differences between both sampling time points), we 

looked at the alpha-diversity and microbial distribution of both time points, but no differences in 

richness and Shannon effective count of species were detected. The phylogenetic tree showed no 

clustering concerning the collection year. This verifies that results obtained were not influenced by any 

cohort bias. As before, the phylogenetic tree built on the observed bacterial diversity could be divided 

in three distinct clusters, each with a higher relative abundance in either Prevotella, Rumincoccus or 

Bacteroidetes.  

In total, about half of the individuals changed their previous cluster (change-yes = 56.1% vs. 

change-no = 43.9%). The change in bacterial composition was not due to an increased age (p-value = 

0.98) or BMI (p-value = 0.22). A tendency of increased weight is associated with a change in cluster. In 

total, 36 individuals became obese over the 5 years but only half of them changed their cluster. The 

correlation of obesity and cluster change was not significant (p-value = 0.09). In order to determine 

similarities between individuals that changed cluster, a linear mixed effect model was implemented. 

The baseline relative abundance values of OTUs from KORA2013 were considered as ‘random effect’ and 

the dichotomous variable of ‘changing cluster’ was considered as fixed effect. The analysis determined 

two genera, Gemmiger (P-value = 0.027) and Roseburia (P-value = 0.014), having significant differences 

in relative abundances between individuals which changed their cluster compared to individuals not 

Figure 24 Phylogenetic tree of the KORA paired subcohort. 

Beta-diversity of the faecal microbiota in paired subcohort. The tree shows similarities between microbiota 
profiles based on generalized UniFrac distances between 1,398 subjects represented by individual branches. 
Unsupervised hierarchical clustering identified three main clusters of individuals (grey-scale next to branches). 
Individual taxonomic composition at the phylum level is shown as stacked bar plots around the dendrogram and 
follows the colour code as in panel. There is sampling-year associated clustering (inner brown bars = year 2013, 
outer cyan bars = year 2018). Right tree shows the distribution of the development of Type 2 Diabetes within 5 
years. Individuals which changed the cluster between 2013 and 2018 are marked with black bars. The outer 
circle shows nonT2D cases (blue), incident T2D cases (orange) and persisting T2D cases (red). An asterix indicates 
those individuals which changed diabetes status and microbial cluster.  
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changing their cluster. Both genera were depleted in the dynamic group and with an even lower 

relative abundances already in KORA2013 compared to KORA2018. Considering BMI as an additional 

random-effect value showed similar results. Thus, an increased number of Gemmiger and Roseburia 

could hint towards a more stable gut ecosystem. These two genera are butyrate producers with anti-

inflammatory properties and are depleted in individuals with metabolic disorders (e.g. obesity, Type 2 

Diabetes; Qin, Li et al. 2012, Karlsson, Tremaroli et al. 2013). However, in KORA2013 and KORA2018 ‘obese’ 

versus ‘non-obese’ showed no differences concerning cluster change in association with these two 

genera.  

 

4.3.8.2. Stability of the gut microbiota composition in a prospective subset of the enable 

cohort 

Participants (N = 100) from the enable cohort were asked to provide three additional stool 

samples, spaced about 12 weeks apart (Figure 25). The composition of the microbiota in the enable 

cohort showed minor changes over time within one individual. Thus, the observed diversity of the gut 

microbiota composition was analyzed for each subject individually. The number of observed species 

per individual varied over time without sharing a similar trend. It was not possible to generate clusters 

of subjects showing similar changes in richness (Supplementary figure 1, Figure 26). Overall, for most 

samples individual’s richness was lower at baseline suggesting an increase in richness with an increase 

in age. Nevertheless, the correlation between richness and age was not significant. The variation 

between individuals was high, shown by a high degree of branching in the cluster tree, i.e., most 

individuals were presented by one branch only. Branch length was generally long, reflecting intra-

individual variation (Supplementary figure 1).  

 

Figure 25 Flowchart for sampling period and daytime of the enable subcohort (N = 100 subjects). 

Colors are indicating the sampling phase (blue = first visit, baseline; orange = second visit, green = third visit, 
yellow = fourth visit). The position of the colored dots is referring to sampling time in hours in a 24-h day. For 
each individual, there are up to four dots (one circle representing one sample).  
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The change of the gut microbiota composition in consecutive samples of one subject in enable were 

analyzed using generalized UniFrac distances (Figure 26 A). The mean distance observed was 0.29 ± 

0.07, which is in concordance with intra-individual distances observed in other studies (Flores, 

Caporaso et al. 2014, Halfvarson, Brislawn et al. 2017). Some individuals displayed a greater within-

sample distance of up to 0.66, suggesting that the composition of the gut microbiota was less stable 

(Figure 26 B). A negative correlation between caloric intake and increased distance (p-value = 0.05, 

Pearson r = -0.21) was observed. However, no correlation could be determined when analyzing 

macronutrients and no correlation with BMI and the alpha-diversity values was found.  

 

Figure 26 Stability of the gut microbiota composition of the enable subcohort. 

Boxplot shows the intra-individual generalized UniFrac distance. Subjects are sorted according to maximum 
distance values. Grey line indicates the mean distance observed in the data set. Examples of six individuals with 
a high intra-individual distance. Dynamic of the samples microbial composition is indicated with a line (grey) 
starting at baseline sample from the recruitment phase (red) along the visits (Visit1 (V1), Visit2 (V2) and Visit3 
(V3); yellow). Mean generalized UniFrac distances are shown on the left corner in each panel.  

 

4.3.8.3. Longitudinal sampling over three years for two individuals 

A time-series analysis of two individuals (S1 and S2) followed over several years was performed 

in order to better understand the dynamic of the human gut microbiota within a single person (Figure 

27). There were no similar changes in the relative abundance values on phyla level seen in S1 and S2 

(Figure 28, Figure 29, Figure 30). While the relative abundance of bacteria of S1 seemed to follow no 

clear pattern and varied without any correlation to weight, Bristol score, richness or sampling time 

(Figure 28), a progressive loss of Bacteroidetes in S1 was observed (Figure 29). This loss was also visible 

on genus level, while an increase of other, unknown genera.  

 

A     B 
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Figure 27 Flowchart of time series longitudinal samples of two Individuals (S1 and S2). 

Colors are indicating the sampling periods. For S1, four sampling periods were conducted (blue = first period, 
baseline; orange = second period; green = third period; yellow = fourth period). For S2, only two sampling periods 
were conducted (blue = first period, baseline; orange = second period). The position of each dot refers to 
sampling time in hours for a 24-h daytime. 

 

The alpha-diversity of S1 correlated with weekdays, which could be related to stress, sleep and diet or 

a combination thereof. The number of observed microbial species was reduced during the week, while 

it increased on the weekend (Pearson correlation = 0.35, p-value = 0.012). The effect was even stronger 

for Shannon effective numbers, ranging from the lowest diversity of 52.29 observed on Mondays to 

the highest Shannon effective number seen on Thursdays (Shannon effective counts = 127.13). 

Adjusting the used regression model for stool weight, under the assumption that it influences bacterial 

composition and diversity, still showed a significant difference between weekday and diversity (p-value 

< 0.001). There was no difference in alpha-diversity after stratifying the data according to sampling 

periods (T1, August 2017; T2 December 2018; T3 February 2019 and T4 February 2020), but a 

significant difference in the overall bacterial composition between the sampling periods was observed 

(p-value = 0.001). The bacterial composition was not influenced by medication (i.e., some probiotics 

taken) nor a medical intervention (i.e., colonoscopy). Comparing four sampling time points of S1, the 

mean distance was comparable between all four sampling phases (generalized UniFrac distance: T1 = 

0.24 ± 0.06; T2 = 0.27 ± 0.07; T3 = 0.23 ± 0.06; and T4 = 0.24 ± 0.04, respectively), as well as between 

different sampling periods (generalized UniFrac distance: 0.27 ± 0.07).  
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Figure 28 Dynamic of the gut microbiota composition in S1 over time. 

(A) Beta-diversity between sampling periods. The three nMDS plots are showing the four different samples 

phases (T1, August 2017; T2 December 2018; T3 February 2019 and T4 February 2020). Each dot 

represents one collected sample, labelled according to time. The intra-individual dynamic of S1 is shown by a 
connected line between time points. In the second sampling phase, a sample before colonoscopy is marked by 
a yellow circle. In the third sampling phase, the intake of a probiotic product is indicated by a blue star. (B) 
Compositional changes over time within S1 illustrated on phyla level. Different sampling phases are indicated on 
the left. Interventions (colonoscopy) or probiotic intake are highlighted by coloured dots or stars as in (A). Next 
to the phyla distribution, the fluctuation of richness is shown (blue line) and the stool weight [g] is shown by a 
barplot, whereby a fully blue bar refers to the max. weight of 360 g and the other bars are coloured proportional 
to this maximum weight.  
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Figure 29 Dynamic of the gut microbiota composition in S2 over time. 

Compositional changes over time within one individual illustrated by phyla (left) and genus (right) level. Different 
sampling phases are indicated by the labelled month on the left side. Next to the genus distribution the 
fluctuation of richness is shown by a line and the stool weight [gr] is shown by a barplot whereby a filled bar 
refers to the max. weight of 330 g and the others are filled proportional to the maximum weight.  
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The comparison of differences in relative abundance values on taxonomic level showed that between 

the four sampling phases two groups of taxa followed the same trend over the three years (Figure 30). 

On family level, Ruminococcaceae and Clostridiales were reduced at T1 and T3 but increased in T2 and 

T4. Members of both bacterial families are butyrate producers and are assumed to have a protective 

effect towards metabolic health, cardiovascular disease and cancer (Qin, Li et al. 2012, Canfora, Jocken 

et al. 2015). A similar trend was seen on genus level in Alistipes and Butyricicoccus, both promoting gut 

health (Thingholm, Ruhlemann et al. 2019). A different pattern was observed in the four genera 

Roseburia, Blautia, Feacalibacterium and Lachnospiracea incertae sedis, showing an increased 

abundance at T1 and T3 but a decreased in T2 and T4, respectively. Low abundances of these genera 

have been linked to increased BMI and metabolic dysbiosis (Lippert et al. 2017). These bacteria 

produce short-chain fatty acids, especially butyrate, affecting colonic motility, immune functions and 

anti-inflammatory properties (Reichardt et al. 2014, Ananthakrishnan, Luo et al. 2017). Other studies 

indicated a correlation with depression and the increased relative abundance of Roseburia, Blautia, 

Feacalibacterium and Lachnospiracea incertae sedis, suggesting that their abundances could be 

affected by stress (Franzosa et al. 2019). Some bacteria appeared in a very low prevalence or were 

even absent at certain time points. For instance, Phascolarctobacterium and Acidaminococcaceae are 

absent at T4. Both genera are associated with the production of the SCFA propionate from succinate 

(Reichardt, Duncan et al. 2014). Succinate, however, is related to Crohn’s disease and IBD (Connors et 

al. 2018). Further, succinate is produced by Veillonellaceae, which was only present at T4. Its presence 

fits to the absence of Phascolarctobacterium and Acidaminococcaceae, since Veillonellaceae are 

negatively correlated with the other two phyla (Fernandez-Veledo and Vendrell 2019). Single sample 

analysis of the ten most abundance genera in S1 showed a strong increase of a member within the 

Clostridiales, e.g., during the winter sampling phase in 2017. The growth of this bacteria could be 

related to the colonoscopy, which took place a few days earlier. The data further revealed that there 

was an association of the relative abundance of this Clostridiales member with stool weight. The 

weight after colonoscopy was reduced, which possibly influenced bacterial composition. The increased 

abundance of the Clostridiales member could be due to decreased abundance of otherwise dominating 

genera due to the intervention. Thus, the decrease of “normal” gut inhabitants could result in an 

increased abundance of the low abundant genera Clostridiales. But since the abundances are relative, 

the number of Clostridiales would be overestimated even if no outgrowth occurs at all, but the 

otherwise dominating members only decrease. Further, each a member of the family Ruminococcacea 

and Prevotella also showed strong dynamic changes over time. A possible explanation for the 

fluctuation for these strains could be diet, since both were shown to be influenced by this (Arumugam, 

Raes et al. 2011, Wu, Chen et al. 2011, Koren, Knights et al. 2013).  
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Figure 30 Intra-individual variation on genus level for S1. 

 (A) Significant differences in the relative abundance (adj. p-value, Kruskal Wallis Rank Sum test) or prevalence 
(adj. p-value, Fisher Exact Test) on taxonomic level between four different sampling phases. Groups are 
chronologically arranged. (B) Compositional changes over time within one individual illustrated by ten most 
abundant genera. Different sampling phases are indicated by the labelled month on the left. Interventions or 
medications are highlighted by colored dots or stars. Next to the phyla distribution, the fluctuation of richness is 
shown by a blue line and the stool weight [g] is shown by a barplot whereby a filled bar refers to the max. weight 
of 360 g and the others are filled proportional to the maximum weight. 

 

Some factors, for example weekday or season, only had a short-term impact on the bacterial diversity. 

Other factors, like aging or disease might change the bacterial composition profoundly. However, a 

number of factors are still unknown, and it is not yet clear what influences the taxonomic composition 

of the gut microbiota and to which degree the overall bacterial composition can be explained by 

environmental factors and phenotypical characteristics. The integration of S1 and S2 in the KORA2013 

cohort showed, that even though the longitudinal samples were clustering together, the distances 

observed within one sample were in some cases higher than they were between some samples. 

Suggesting that one individual could appear as diverse as two different subjects. Inversely suggesting 

that the microbiota composition of two different subjects could be more related to each other than 

one individual. In a data set of 4,181 individuals, 34 pairs of subjects were present with a generalized 

UniFrac distance ≤ 0.27 (i.e., the threshold was determined from the calculated mean distance for the 

samples of S1), which indicates a relatedness we normally could attribute to a single individual. 

Nevertheless, only one sample pair of S1 was falling below the similarity distance of samples over 

different time points for on individual. Thus, there is no “reference distance”, which can be used 

evaluating the similarity between and within individuals. This finding again highlights the constraints 

we face in comparing between different studies.  

 

 Integrating datasets: KORA2013, FoCus and enable cohort 

The individual analysis of each cohort provided information about the bacterial composition, the 

diversity, similarities and dissimilarities within one cohort. All cohorts showed a large variation 

between individuals, which could currently not be linked to host health or physiological differences. 

To better understand the differences between the cohorts, a data set containing all three cohort 

studies was assembled. This will allow to determine the specifics and commonalities between the three 

cohorts. The generated data set included 4,469 samples and 9,640 OTUs. The latter number was 

reduced to 167 OTUs after applying thresholds of 0.1% minimum relative abundance and a 10% 

prevalence. This great reduction in OTU number for such moderate thresholds shows the sparsity of 

16S rRNA gene sequencing data. Unsupervised de-novo clustering of the combined data determined 

three distinct cluster, comparable to the cluster shown in the individual cohort analysis before (Figure 
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31, Figure 15, Figure 19, Figure 23). We observed an increased accumulation of individuals from the 

FoCus cohort in C3. Thus, samples of this cohort seemed to be closer related to each other than to 

samples from the other two cohorts. The regional differences between Northern and Southern 

Germany could be an explanation of the observed differences. In contrast, samples from KORA2013 and 

enable were spread out evenly over the whole tree (Figure 31).  Analysis of alpha-diversity provided 

no further insights.  

 

 

 

 

 

A 

B 

Figure 31 Sample tree of the integrative dataset (KORA2013, enable and FoCus cohorts). 

(A) Beta-diversity of the fecal microbiota in the cohort. The dendrogram shows similarities between microbiota 
profiles based on generalized UniFrac distances between all subjects represented by individual branches. 
Unsupervised hierarchical clustering identified three main clusters of individuals (grey-scale next to branches). 
Individual taxonomic composition at the phylum level is shown as stacked bar plots around the dendrogram. Bars 
in the outer part of the figure indicate cohort affiliation. The first label corresponds to the KORA2013 cohort from 
year 2013 and year 2018, the second label marks individuals of the FoCus cohort and the outer label corresponds 
to the enable cohort. (B) Differences in relative abundances of the three genera Bacteroides, Ruminococcus and 
Prevotella for the three microbiota clusters as in A. p-value < 1∙10-5. 
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4.4. Diurnal rhythmicity in fecal microbiota composition  

The analysis of three large cohort studies as well as longitudinal time series analysis showed that 

defecation time, i.e., when the stool samples were collected, significantly explains some of the 

bacterial compositional. Based on this finding and a previously described circadian rhythm of the gut 

microbiota (Liang et al. 2015, Thaiss et al. 2016), we considered diurnal rhythmicity as important factor 

in our studies.  

 Description of the diurnal rhythmicity in the KORA2013 cohort  

Individuals of the KORA2013 cohort were binned according to their denoted sampling time point 

and analyzed regarding possible fluctuations of microbial diversity throughout a 24h-day. Bins were 

predefined as intervals between 0 h, 3 h, 5 h, 7 h, 9 h, 11 h, 13 h, 15 h, 17 h, 19 h, 21 h, and 23 h. The 

distribution of subjects per sampling timepoint was sufficient to generate reliable results. 

 

 

Figure 32 Flowchart of the distribution of sampling time in the KORA2013 cohort (N = 1,943 samples).  

Dots shows the sampling time point for the whole KORA cohort ordered according date of sampling. However, 
only 1,943 individuals of 1,976 participants provided information about the sampling time.  

 

Sample collection time was available for 1,943 individuals from the KORA2013 cohort. The circadian 

analysis examines possible circadian rhythmicity of numeric values, e.g., relative abundance, over a 

24-h day by fitting the data to a harmonic cosines curve, a non-linear transformations curve used in 

the modelling of biological rhythms (Marler et al. 2006) (Figure 32). The relative abundance values for 

the OTUs in each bin were averaged and are shown by mean and standard error mean (SEM).  

The alpha-diversity showed a fluctuation over the day, reaching its peak around noon and 

flatten out during night. Diurnal rhythmicity was also observed in the two main phyla Bacteroides and 

Firmicutes, oscillating in antiphase (Figure 33 A). Thus, the relative abundance of Bacteroides was 

lower during the day and showed a 6% higher mean relative abundance at night while Firmicutes 
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appeared vice versa. To observe bias due to unequal distribution of individuals per time point, 

randomly selected subsets of an equal number of subjects per time were generated 10-times and also 

analyzed by JTK_CYCLE. However, no bias was observed (Figure 33 B).  

 

Figure 33 Diurnal profiles of alpha-diversity and of relative abundances of phyla. 

(A) Alpha-diversity and the relative abundance of Bacteroidetes and Firmicutes in 1,943 subjects. Significant 
rhythms are illustrated with fitted cosine-wave curves (cosine-wave regression, p-value ≤ 0.05). (B) Circadian 
profiling of the relative abundance of Bacteroidetes based on 10 different randomly selected subsets with equal 
sample size (N = 25 subjects) between 5 and 11am. (relative abundance: 0.1%, prevalence: 10%). 

 

 

 

Figure 34 Phase relationship and periodicity of OTUs. 

(A) Heatmap depicting the overall phase relationship and periodicity of OTUs (n = 422; mean relative abundance 
> 0.1%; prevalence > 10% individuals) ordered by their cosine-wave peak phase according to time of day and 
normalized to the peak of each OTU. (B) Amount of rhythmic (white) and arrhythmic (grey) OTUs and their 
relative abundance in percent (compare to panel B). 
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In order to identify rhythmicity of individual bacterial taxa, a subset of 422 prevalent (> 10%) and 

abundant (> 0.1%) OTUs was analyzed in more detail. OTUs were ordered according to their highest 

relative abundance from early morning to late night. The data were used to create a heatmap, with 

relative abundance values on the x-axis and the time on the y-axis. The depicted OTUs generated a 

pattern, forming groups of OTUs which were high abundant in the morning and low in the evening and 

vice versa (Figure 34 A). It turned out that 15.2% of these OTUs were rhythmic (rOTU) according to 

cosine-wave regression analysis, covering a cumulative abundance of 16.0% (Figure 34 B). 

As shown before, individuals fell into three distinct clusters based on microbial similarities 

(Figure 15). Each cluster is dominated by a certain taxon, e.g., C1 contains higher amounts of 

Bacteroides and C3 more Prevotella. Both cluster show robust oscillations in alpha-diversity, while 

subjects in cluster C2 with enhanced amounts of Ruminococcus lack oscillations (Figure 35 A,B). The 

percentage of rhythmic OTUs was comparable between all three clusters, a minority of rhythmic OTUs 

was shared. The absence of rhythmicity in alpha-diversity in C2 was not due to low abundance of rOTUs 

(Figure 35 C), which could indicate that many OTUs oscillate with opposing phases in C2. This could 

explain the absence of the rhythm in alpha-diversity when using all OTUs together. OTUs, which were 

part of C3, tend to be more related, while the other OTUs are more spread out over the whole tree. 

Maximum relative abundance of all cluster-associated rOTUs was 2.5% while most of the remaining 

rOTUs showed a relative abundance below 1%.  
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Figure 35 Diurnal rhythmicity in microbiota associated cluster. 

(A) Diurnal profiles of alpha-diversity for the three determined cluster (Figure 15 B). Significant rhythms (cosine-
wave regression, p-value ≤ 0.05) are illustrated with fitted cosine-wave curves; data points connected by straight 
lines indicate no significant cosine fit curves (p-value > 0.05) and, thus, no rhythmicity. (B) Amount of rhythmic 
OTUs found within one cluster. Cluster C1 and C2 share 0.5% of rhythmic OTUs (yellow) and C2 shares 0.9% with 
C3 (orange) as well as a 0.2% overlap between all three clusters. (C) Sequence similarity of all rhythmic OTUs 
grouped by cluster. Black bars around the tree illustrate the mean relative abundance of these OTUs (max. 2.5%).  

 

Rhythmicity of the fecal microbiota based on targeting the V3V4 V-region of the 16S rRNA gene was 

next compared to data obtained by targeting the V1V2 V-region of the 16S rRNA gene (Figure 36). For 

V1V2, similar diurnal rhythms were detected in the phyla Firmicutes and on the amount of rhythmic 

OTUs (cosine-wave regression: 15.2%, harmonic cosine-wave regression: 16.9%), with a less 

pronounced OTU rhythmicity observed when analyzed by JTK_CYCLE (7.4%). Any oscillations in alpha-

diversity and Bacteroidetes were undetectable with either method to find rhythms for V1V2 data 

(compare Figure 33 with Figure 36).  

A 

B C 
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Figure 36 Diurnal rhythmicity in targeting another variable region of the 16S rRNA gene. 

Diurnal profiles of alpha-diversity in 1,943 subjects by targeting the V1V2 V-region of the 16S rRNA gene. 
Significant rhythms are illustrated with fitted cosine-wave curves (cosine-wave regression, p-value ≤ 0.05). 

 

Taken together these findings supported our hypothesis that 10 – 20% of the composition of fecal 

microbiota changes during the day and different times of the day are dominated by different microbial 

taxa. Thus, sampling time should be considered as a microbiota -associated factor when analyzing the 

gut microbiota.  

 

 Circadian rhythm in the prospective dataset from the KORA2018 cohort  

The prospective data from the KORA2018 cohort in year 2018 can be used to show the 

reproducibility of circadian rhythms from KORA2013. The analysis was performed on 703 individuals 

from the prospective KORA2018 cohort. It could be shown that the bacterial composition follows 

circadian rhythmicity even after 5 years. A significant oscillation in alpha-diversity was determined 

with a similar curve as seen in the data from KORA2013. Richness and Shannon effective number 

increase during the day and reach their peak around noon, as before (Figure 37 A). Finally, also the 

two main phyla Bacteroides and Firmicutes have a congruent rhythmicity as in KORA2013.  
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Figure 37 Diurnal rhythm and microbiota profiling of KORA2018. 
Circadian analysis of rhythmic OTUs in percent based on JTK_CYCLE, cosine-wave regression and harmonic 
cosine-wave regression of the subcohort from year 2018. On the right, the heatmap depicts the overall phase 
relationship and periodicity of OTUs. The map was generated by using the raw data of 425 OTUs passing 
thresholds (relative abundance: 0.1%, prevalence: 10%) and ordered by phase and normalized to the peak of 
each OTU. 
 

In total, 10.1% of the OTUs were rhythmic according to cosine-wave regression analysis. Compared to 

the data from KORA2013 with 15.2% rOTUs, less rhythmic OTUs are found. However, this can be 

attributed to the lower sample number included in the analysis. rOTUs have a cumulative abundance 

of 10.6%, compared to 16.0% in year 2013. The generated heatmap (see Figure 34) provides 

information about the periodicity of the OTUs, which is visible by the generated pattern as before 

(Figure 37 B).  

 

 Circadian rhythm in the FoCus cohort 

To validate rhythmicity of the human gut microbiota in an independent population-based cohort 

study, a similar analysis was performed for the FoCus cohort (N = 1,492). Similar to KORA2013 the co-

variable ‘time of defecation’ contributed significantly to the explained variation of the gut microbiota 

(Figure 20). Rhythmicity for FoCus cohort was validated on multiple levels, such as alpha-diversity, 

phyla, and OTUs (Figure 38).  
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Figure 38 Diurnal profiles of alpha-diversity and of relative abundances of the phyla. 

Alpha-Diversity and the relative abundance of Bacteroidetes and Firmicutes in 1,492 subjects. Significant rhythms 
are illustrated with fitted cosine-wave curves (cosine-wave regression, p-value ≤ 0.05). 

 

Circadian rhythmicity in richness and Shannon effective counts could be confirmed for the FoCus 

cohort. Nevertheless, rhythmicity in Bacteroides and Firmicutes was not found. The reason for the 

absence of rhythmicity could be due to host health, insufficient distribution of sampling time point or 

other co-variables, which are still unknown (Figure 38).  

 

 Longitudinal studies 

Multiple samples of one individual are reflecting the composition changes within one individual 

associated with sampling time and ruling out many co-variables or confounding factors. Thus, 

prospective data from the KORA2018 cohort (two sampling time points) as well as the longitudinal subset 

of the enable cohort (four time points) were used here. In addition, the times series from the 

longitudinal dataset of S1 with 58 samples were analyzed.   

 

4.4.3.1. Circadian rhythm in the enable cohort   

The distribution of sampling time points in enable was sufficient to generate diurnal. Taking 

advantage of the additional sampling of further three consecutive samples from 80 individuals, the 

circadian analysis was performed on the prospective subset only (Figure 25).  
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Figure 39 Diurnal rhythm and microbiota profiling of longitudinal samples from the enable subcohort (N = 
80).  

(A) Alpha-Diversity and the relative abundance of Bacteroidetes and Firmicutes in N = 80 subjects and N = 320 
samples. Significant rhythms are illustrated with fitted cosine-wave curves (cosine-wave regression, P-value ≤ 
0.05). (B) Circadian analysis of rhythmic OTUs in % based on JTK_CYCLE, cosine-wave regression and harmonic 
cosine-wave regression of the enable cohort. Heatmap depicting the overall phase relationship and periodicity 
of OTUs is generated by the raw data of OTUs (relative abundance: 0.1%, prevalence: 10%) ordered by phase and 
normalized to the peak of each OTU. 

 

Significant rhythmicity was observed in alpha-diversity with a different peak in richness and Shannon 

effective counts compared to the KORA2013 cohort. There was a small shift in number of observed 

species towards later time points resulting in an increased richness during the morning and noon and 

an increased richness in the afternoon and early evening (Figure 39 A). On phyla level, the same shift 

was observed with Bacteroides reaching its peak in the morning and showing the lowest relative 

abundance values in the afternoon. The relative abundance values of Firmicutes showed a similar 

cosine curve with similar peaking hours as observed for richness and Shannon effective counts (Figure 

39 A). In total, 19.91% of the OTUs were rhythmic according to cosine-wave regression analysis, 

covering a cumulative relative abundance of 29.5%. Compared to KORA, the number of rhythmic OTUs 

(KORA2013 = 15.2%, KORA2018 = 10.1%) as well as their contribution to overall relative abundance 

(KORA2013 = 16.0%, KORA2018 = 10.6%) was much higher in the enable cohort - even though the number 

of analyzed samples was smaller. Increased values for rhythmicity might be explained by the repeated 

sampling of the same individuals. It turned out that for the analysis of circadian rhythmicity, the 

number of samples is even more important than the number of subjects. Thus, also these data confirm 

the presence of rhythmicity in the human gut microbiota.     
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4.4.3.2. Circadian rhythm within one subject – a longitudinal sampling over three years  

In the description of the dynamic and stability of fecal microbiota composition, fluctuations in 

the relative abundances on phyla level and alpha-diversity were shown. For the analysis of time 

dependent changes in the fecal bacterial composition, a variety of sampling time points, covering 

approximately the complete 24-h day, is necessary. Since individual S2 had too many missing time 

points, only individual S1 was considered for the analysis (Figure 27).   

 

Figure 40 Heatmap depicting the overall phase relationship and periodicity of OTUs in S1. 

OTUs are (n = 384 OTUs from n = 58 longitudinal samples; mean relative abundance > 0.1%; prevalence > 10% 
individuals) ordered by their cosine-wave peak phase according to time of day and normalized to the peak of 
each OTU. Amount of rhythmic (white) and arrhythmic (grey) OTUs and their relative abundance in percent. 

 

In total, 3% of all 384 OTUs are rhythmic, covering 3.7% of the whole composition. The generated 

heatmap (see Figure 37) shows the OTU pattern oscillating over a 24-h day with differences in the peak 

relative abundance (Figure 40).  

Taken together, all results supporting the hypothesis for the presence of a circadian rhythm in 

the gut microbiota. Already cross-sectional data are appropriate to analyze the circadian rhythm, but 

longitudinal data seem to provide even clearer signals. Based on these findings, the circadian rhythm 

was included in the comparative analysis between nonT2D and T2D patients.  
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4.5. Association of T2D and the human gut microbiota 

To better understand the possible association of the gut microbiota and T2D, cross-sectional fecal 

samples from 1,976 individuals of the KORA2013 cohort were analyzed. The aim of this analysis was to 

identify a bacterial risk signature in T2D using machine learning. In addition to this classification the 

predictability of the obtained bacterial risk signature was evaluated by including consecutive samples 

from a KORA2018 subset of 699 individuals. Finally, additional cohorts (FoCus, TwinsUK, longitudinal 

data from S1) were integrated to validate the risk signature. In total, the analysis was performed on N 

= 4,435 subjects (n = 5,874 samples incl. different time points).  

 

 Metabolic health status causes a shift in the bacterial gut composition  

Participants of the KORA2013 cohort were stratified according to their health status, focusing on 

four major diseases: obesity (N = 558 subjects), T2D (T2D, N = 277 subjects) together with prediabetes 

(N = 356 subjects), cancer (N = 200 subjects), and myocardial infarction (N = 66 subjects). The 

distribution of these diseases among a tree based on taxonomy of the OTUs detected, showed no 

distinct clustering (Figure 11). Next, the previously determined de-novo clusters (C1 – C3) were 

examined separately. Still, no significant differences in the distribution of any disease (i.e., T2D, cancer, 

CVD and obesity) was found (Table 13).  

 

Table 13 Distribution of major disease among microbial associated cluster. 
 C1 (N = 744) C2 (N = 981) C3 (N = 249) P-value 

T2D 15.72% (N= 117) 12.74% (N = 125) 14.05% (N = 35) 0.04 

Prediabetes  20.96% (N = 156) 16.20% (N = 159) 16.46% (N = 41) 0.25 

Cancer 9.81% (N = 73)  10.60% (N = 104) 9.23% (N= 23) 0.78 

CVD 3.22% (N = 24) 3.26% (N = 32) 3.61% (N = 9) 0.68 

BMI ≥ 30 32.79% (N = 244) 23.24% (N = 228) 34.53% (N= 86) 0.06 

 

Finally, the cohort was stratified either according to the diabetes status of each participant or BMI. 

Each group of the diabetes status is briefly described by its main differences including age, medication, 

blood measurements and BMI in Table 14. This time, both stratifications showed significant 

differences. Decreased richness and decreased Shannon effective numbers were observed (Figure 41).  
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Table 14 Description of the KORA2013 cohort stratified according to diabetes status. 
 nonT2D (N = 1270) Prediabetes (N = 356) T2D (N = 277) P-value 

Male (%) 566 (44.56%) 202 (56.74%) 164 (59.21%) 1.65E-07 

Age 57 ± 11 65 ± 11 69 ± 9 < 2.2e-16 

Waist (cm) 93 ± 13.09 103.06 ± 12.50 107.34 ± 13.13 1.16E-09 

Hip (cm) 105.21 ± 8.89 109.15 ± 9.21 110.72 ± 10.63 < 2.2e-16 

Bodyfat (%) 31.89 ± 7.04 34.51 ± 6.59 35.37 ± 7-03 3.98E-01 

BMI 26.62 ± 4.46 29.75 ± 4.68 31.09 ± 5.38 9.92E-03 

Triglyceride 
(mg/dl) 

109.77 ± 66.51 141.21 ± 70.81 154.89 ± 84.77 1.58E-06 

HbA1c (%) 5.32 ± 0.32 5.60 ± 0.33 6.49 ± 1.03 < 2.2e-16 

HOMA-IR 2.09 ± 1.24 3.85 ± 2.26 5.48 ± 3.72 < 2.2e-16 

Glucose (mg/dl) 94.25 ± 7.32 106.40 ± 9.72 136.79 ± 34.30 < 2.2e-16 

Glucose (mg/dl) 
after OGTT 

97.20 ± 20.09 148.13 ± 27.30 222.27 ± 65.88 < 2.2e-16 

Insulin (pmol/l) 53.33 ± 29.54 87.43 ± 49.65 107.80 ± 93.70 < 2.2e-16 

Insulin (pmol/l) 
after OGTT 

283.55 ± 245.85 653 ± 496.19 794.53 ± 491.21 < 2.2e-16 

HDL-Cholsterin 
(mg/dl) 

69.48 ± 18.65 61.34 ± 18.11 57.84 ± 16.39 9.76E-06 

LDL-Cholesterin 
(mg/dl) 

135.49 ± 34.96 139.03 ± 36.69 128.32 ± 37.32 3.32E-01 

Vitamin D 
(ng/ml) 

25.87 ± 11.98 23.65 ± 11.89 22.62 ± 12.37 7.79E-01 

Metformin 0 0 142 (48.73%) < 2.2e-16 

PPI 99 (7.80%) 56 (15.73%) 48 (17.32%) 3.92E-07 

 

To further analyze the data unsupervised clustering was performed for each diabetes status. The 

number of clusters (varied from 3 to 4 clusters) differed according to health status. To avoid bias due 

to an unequal sample sizes 228 T2D age-matched healthy individuals were selected (without any 

metabolic health condition or any other major disease). 
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Figure 41 Differences in alpha-diversity and Firmicutes to Bacteroides ratios in T2D and obese individuals. 

Stratifying the whole cohort according to diabetes status (red, T2D; yellow prediabetes; blue nonT2D) and obesity 

(black, BMI < 30; grey, BMI ≥ 30) shows significant differences in richness and Shannon effective number of 

species. The decreasing diversity is significantly associated with a decrease in health status. The Firmicutes to 

Bacteroides (F/B) ratio was not affected by metabolic health.  

 

The fecal microbiota in individuals with prediabetes and nonT2D was divided into two distinct 

clusters. Compared to the three detected clusters seen in the KORA2013 cohort (Figure 42). The reduced 

number of microbiota driven clusters (C1-C2) could possibly be explained by a less diverse microbial 

composition found in a subset of selected healthy individuals. However, for T2D cases, four different 

clusters were found, suggesting an association of a more diverse and metabolic disorder. Two of these 

clusters were assigned to the Bacteroides- cluster, which was also observed in nonT2D subjects. For 

T2D and nonT2D one cluster was clearly dominated by Prevotella, while Ruminococcus was not found 

to be overrepresented in one cluster. For prediabetes the first cluster was dominated by Bacteroides 

and Prevotella, while the second cluster seemed to be Ruminococcus-associated (Figure 42 A). The 

latter cluster also showed an increased bacterial diversity and richness. In nonT2D, richness was not 

significantly different between the two clusters, but the overall diversity was lower in the Prevotella 

cluster. Vice versa, the Prevotella cluster showed the highest diversity and richness for T2D individuals, 

while the Bacteroides cluster had less bacteria (Figure 42 B). Finally, the results gained above were 

compared to the clusters C1, C2 and C3, which were found when including all subjects of KORA. While 

in the overall cohort cluster Bacteroides seems to be the least diverse cluster, this was not found for 

the corresponding cluster of prediabetic and nonT2D individuals. Overall, we concluded that there are 

clusters, which can be formed according to host health corroborating previous studies (Arumugam, 

Raes et al. 2011, Costea, Hildebrand et al. 2018). However, these clusters were driven by certain 

genera, varying according to the metabolic health status. This again highlights the complexity of the 

microbiota composition of the gut and its possible dependency on individual host specific 

characteristics (Figure 42 C). 
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Figure 42 Unsupervised clustering for persons stratified by diabetes in the KORA2013 cohort. 

(A) The cohort is stratified into T2D (T2D-C1 n = 42 subjects, T2D-C2 n = 93 subjects, T2D-C3 n = 65 subjects, T2D-
C4 n = 83 subjects), prediabetes  (Pre-C1 n = 280 subjects, Pre-C2 n = 73 subjects) and a matched nonT2D control 
group (nonT2D-C1 n = 178 subjects, nonT2D – C2 n = 50 subjects). An unsupervised clustering was performed on 
the microbial profiles for each group. Number of bacterial associated clusters was determined based on the 
Calinski-Harabasz index. The three boxplots are showing the relative abundance values of the ‘enterotype’ 
associated genera for each cluster in different diabetes groups. (B) Alpha-diversity of the de-novo cluster found 
in the groups, shown as richness and Shannon effective number. (C) Non-parametric multidimensional scaling 
plots illustrating the beta-diversity of the de-novo cluster for each group. According to multivariate 
permutational analysis, a significant difference between the clusters for all groups were found (P-value T2D = 
0.001; p-value prediabetes = 0.001; p-value nonT2D = 0.001).  

 

 Taxonomic differences in T2D subjects 

Differences between the OTU relative abundance of T2D and nonT2D were determined. Next 

confounding factors were adjusted by conducting a multivariate permutation analysis on the 

taxonomic profile of T2D cases and a T2D-matched subcohort. A list of potential confounding factor 

was assembled based on literature (Belkaid and Hand 2014, Thingholm, Ruhlemann et al. 2019). 

Disease related variables, e.g. glucose or HbA1c values, were excluded. In total, six variables were 

found be confounding factors (Supplementary table 2) – metformin intake, physical activity, vitamin 

D intake, smoking, age, and gender. All statistical analysis were adjusted for these factors. 

A B C 
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Figure 43 Thirty OTUs, which had significantly different relative abundances between T2D and nonT2D 
subjects. 

 

A GLM model, following a binomial distribution, was applied to the relative abundance of all OTUs (N 

= 2,089) to determine significant differences between T2D and nonT2D. The status nonT2D was 

considered for subjects without any conspicuous diabetes related blood values, neglecting any 

comorbidities. In this analysis, 30 OTUs were identified to vary in their relative abundance (Figure 43), 

of which 5 were increased and 25 were decreased in T2D. Decreased OTUs mainly belonged to 

Feacalibacterium prausnitzii (11), Subdoligranulum (5), and Christensenellaceae (4). The remaining five 

OTUs were identified as Faecalibacillus faecis, Bifdobacterium longum, Ruminococcus bicirculans, 

Faecalibacillus intestinalis, and Intestinibacter bartlettii. The latter was also found to be increased in 

T2D, making up the most abundant two taxa in the analysis. Besides two OTUs seemingly E. coli, there 

was also an increased relative abundance in Negativibacillus sp. and Clostridium celatum, which both 

significantly differed between T2D and nonT2D.   

 

 Disrupted bacterial oscillations in obesity and T2D subjects 

To analyze the association of circadian rhythm and metabolic health, the data were stratified 

according to the diabetes status. Additionally, the influence of obesity in subjects without T2D (BMI ≥ 

30; N = 401 subjects) as well as a combination of T2D cases regardless of BMI (N = 269 subjects) was 

analyzed. Robust daily oscillations in alpha-diversity, phyla and molecular species were observed in 

subjects without T2D (nonT2D, N = 1,255 subjects), but was disrupted in T2D (Figure 44 A). When 

analyzing the two main phyla, Bacteroidetes and Firmicutes, the abundance in T2D and in prediabetes 

was distributed evenly during a day period, while it was following a significant cosine curve in nonT2D. 

In T2D, we observed an even stronger loss of rhythmicity compared to the intermediate phenotype, 

suggesting that the process of losing rhythmicity already starts in the early stages of T2D (Figure 44 B). 
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Heatmaps were generated for the stratified data sets to investigate the oscillation of OTUs in different 

phenotypes (Figure 44 C). OTUs were grouped according to their relative abundance peaks in nonT2D. 

The pattern seen in the heatmap for nonT2D (Figure 45 B) could not be replicated when using data 

from individuals with metabolic disorder. This suggests that in T2D, OTUs reaching their peak at 

different times, which results in a disruption of the distribution, as seen in non-diseased controls. While 

the pattern was still appearing to some extent in prediabetes, it was absent in T2D, indicating that 

degradation of metabolic health results in a different distribution of relative abundances during the 

day/night cycle. Overall, the number of rhythmic OTUs was reduced in T2D compared to nonT2D and 

prediabetes. While in nonT2D 9.0% of the OTUs were only rhythmic in this subgroup, approximately 

1% was shared between nonT2D and prediabetes. The proportion of rhythmic OTUs dropped down to 

only 5% in prediabetes. Only 1.9% of all OTUs were rhythmic in T2D without any OTUs shared with 

prediabetes and/or nonT2D (Figure 44 B). 
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The comparison of subjects without metabolic health issues to subjects with metabolic disease (either 

T2D or obesity) identified OTUs, which are showing lack rhythmicity. Thus, rhythmicity in alpha-

diversity and phylum proportions (Bacteroidetes and Firmicutes) were absent in subjects with either 

T2D (N = 401 subjects) or in individuals with a BMI ≥ 30 (N = 545 subjects) (Figure 45 A). OTUs with 

disrupted rhythmicity in T2D were largely (> 60%) not shared with arrhythmic OTUs in obese 

individuals, indicating a BMI-independent loss of rhythmicity in T2D. This observation is one of the key 

results confirming the presence of circadian rhythm in the human gut and its association with 

metabolic health.  

A B 

C 

Figure 44 Diurnal rhythm in the human gut micorbiota in subjects with T2D, prediabetes or nonT2D. 

(A) Diurnal profile of alpha-diversity and of relative abundances of the phyla Bacteroidetes and Firmicutes of 
subjects with diabetes (T2D, red; N = 269 subjects), with prediabetes (Pre, orange; N = 352 subjects) or without 
diabetes (non T2D, blue; N = 1,254 subjects). Significant rhythms (cosine-wave regression, p-value ≤ 0.05) are 
illustrated with fitted cosine-wave curves; data points connected by straight lines indicate no significant cosine 
fit curves (p-value > 0.05) and thus no rhythmicity. (B) Circadian analysis of rhythmic (coloured) and arrhythmic 
(grey) clustered OTUs and their relative abundance in percent based on JTK_CYCLE, cosine-wave regression and 
harmonic cosine-wave regression in nonT2D (left, blue; N = 1,255 subjects), prediabetes (middle, orange; N = 352 
subjects) and T2D (right, red; N = 269 subjects). An overlap in rhythmic OTUs between each of these three 
metabolic states is given in yellow. (C) Heatmap of the normalized daytime-dependent relative abundance of 
OTUs based on 422 OTUs (see panel A). Data are normalized to the peak of each OTU and ordered by the peak 
phase according of subjects without diabetes (left, nonT2D) with prediabetes (middle) or with diabetes (right, 
T2D).  
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A subset of OTUs, associated with metabolic health, showed disrupted rhythmicity (in T2D, prediabetes 

and obesity) (Figure 46). Out of this OTU subset, we identified 87 OTUs, which had lost rhythmicity in 

T2D. Most of these OTUs belonged to the genera Akkermansia, Bacteroides, Bifidobacterium, Blautia, 

Clostridium, Coprococcus, Dorea, Prevotella, Roseburia and Ruminococcus (Figure 46). These findings 

A

B

Figure 45 Diurnal rhythm in the human gut microbiota in subjects with T2D and with either BMI ≥ 30 or BMI < 
30. 

(A) Diurnal profile of alpha-diversity and of relative abundances of the phyla Bacteroidetes and Firmicutes of 
subjects with diabetes (T2D), either shown for a BMI < 30 (black, N = 1,393 subjects) or a BMI ≥ 30 (grey, N = 545 
subjects). Significant rhythms (cosine-wave regression, p-value ≤ 0.05) are illustrated with fitted cosine-wave 
curves; data points connected by straight lines indicate no significant cosine fit curves (p-value > 0.05) and thus 
no rhythmicity. (B) Heatmap of the normalized daytime-dependent relative abundance of OTUs based on 422 
OTUs (see panel A). Data are normalized to the peak of each OTU and ordered by the peak phase according of 
subjects with diabetes (T2D) and a BMI < 30 (left N = 124 subjects) or a BMI ≥ 30 (right N = 145 subjects). 
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were in line with a previously published study by Thaiss et al., who analyzed the circadian rhythm in 

two individuals over time (Thaiss, Zeevi et al. 2014).  

 

 

Figure 46 Diurnal rhythm associated with metabolic health. 

(A) OTUs show diurnal rhythms in control groups (nonT2D , dark green; N = 1,254 subjects; BMI < 30, light green;  
N = 546 subjects), but are arrhythmic in disease stages like prediabetes (prediabetes, orange; N = 352 subjects), 
diabetes (T2D,red;  N = 269 subjects), or obesity (BMI ≥ 30, grey; N = 1,396 subjects). Significance of rhythmicity 
(y-axis) is indicated by p-value below the dashed line (p-value ≤ 0.05; cosine-wave regression). (B) amplitude of 
OTUs rhythmic in healthy controls but arrhythmic in T2D. Of 422 OTUs 87 OTUs oscillated in controls only. These 
OTUs are ordered according to their fluctuation amplitude in healthy controls: light grey, decreased; dark grey, 
increased relative abundance in T2D. 

 

In conclusion, these results clearly indicated a time dependent shift in the relative abundance of 

microbial species over a 24-hour day. Metabolic health is associated with the diurnal oscillation of 

certain bacteria and results in a disruption of the oscillation pattern in T2D and obese. It was possible 

to determine specific bacteria, which are losing their rhythmicity in individuals with metabolic issues.  

 

 Influence of diet and eating behavior on daytime dependent bacterial oscillation 

Diet, the number of consumed meals, and time of eating could influence the gastro-intestinal 

system and, consequently, the time of defecation, which may have an influence of microbial 

composition detected in stool samples. Based on a 24-hour food recall, it was possible to draw 

conclusions of individual’s food intake as well as number of consumed meals, and which meals were 

normally consumed. Additionally, we included data from a Food Frequency Questionnaire (FFQ) to 

estimate the overall intake of macronutrients such as fiber, saturated and unsaturated fat, and 

proteins.  

A B 
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Figure 47 Food intake and eating pattern. 

Food behavior and intake between nonT2D, prediabetes and T2D. Left diagram shows individuals self-reported 
number of meals per day ranging from 1 to 6, number of subjects assigned to the mean-number are shown below 
in grey. They are grouped according to diabetes status number of individuals per group are below the status in 
grey. Size of the blue circles are referring to the proportion of subjects within each diabetes group. Panel in the 
middle shows the type of meal. The size of the blue circles indicates the number of individuals within each 
diabetes group reported to have had this type of meal. The right boxplot shows the calorie intake in kcal per day 
for each group (color code as in panel A). In total 7.1% of nonT2D, 10.1% of prediabetes and 20.2% of T2D 
provided no information. For nonT2D 0.17% reported to have no meal at all and 0.45% for T2D.  

 

Under the assumption that there are difference in eating habits between nonT2D, prediabetes and 

T2D, the distribution and correlations between these groups was analyzed. Starting with the number 

of meals consumed on a regular day showed that there were no differences in the proportion of 

consumed meals between the groups. The majority in all groups consumed three meals per day (Figure 

47). There was also no observed difference in the type of meal (e.g. breakfast, lunch etc.). One would 

assume that individuals suffering from a metabolic disorder may tend to eat more and to eat later 

during the day, including snacks. Nevertheless, there was no such pattern observed in the KORA2013 

cohort. Of note, in the analysis of eating habits and health the variation in underreporting needs to be 

considered. There were only 7.1% missing information in nonT2D, but the number increased to 10.1% 

for prediabetes and to 20.2% for T2D. This finding shows that the self-reported questionnaires likely 

result in underreporting, especially for the groups obese individuals (King et al. 2016). However, 

previous studies did not find that mealtime influences the hosts’ circadian rhythm, because of the 

presence of unregular food habits without clear patterns (Collado et al. 2018). In our study, the overall 

energy intake did not differ between the groups (Figure 47). The number of consumed meals 

influences the overall energy intake. An additional stratification concerning physical activity showed 

that there was a negative correlation between number of consumed meals and physical activity. Thus, 

the more meals were consumed the less sport was done (Supplementary figure 2). The global intake 

of macronutrients, such as fiber, saturated and unsaturated fat, and proteins was estimated based on 

a FFQ. We found no correlation between food intake, global nutrients as well as macronutrients’ intake 

with diabetes blood markers (fasting blood glucose, HbA1c, HOMA index), suggesting that the 

observed arrhythmicity in fecal microbiota composition was independent of dietary habits (Figure 48).  
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 Classification and prediction of T2D based on microbial signatures 

With the aim to identify bacteria, which were important in the onset and progression of T2D, we 

started to focus on the identification of risk signatures for T2D. Therefore, the KORA2013 cohort was 

split in two subsets to avoid possible misinterpretations due to overfitting of the data. The following 

results were all conducted on a subset of N = 1,340 individuals. Subjects which were re-collected in the 

second sampling phase were excluded. The excluded subjects were further used in the prospective 

analysis to test model’s predictability for T2D. To increase the number of incident T2D cases in year 

2018 subjects, which were excluded due to antibiotic intake or gastrointestinal related disease, were 

included (Table 15).  

 

Table 15  Overview of subjects included in the analysis. 

 Year N sequenced N after exclusion No. OTUs analyzed 

Cross-sectional analysis 2013 2,137 1,976 422 

Classification model 2013 2,137 1,340 425 

Cross-sectional analysis 2018 900 699 318 

Prediction model 
2013 2,137 699* 

2,275** 
2018 900 699 

   * different exclusion criteria  

   ** no OTU filtering for BLAST search 

 

Figure 48 Differences and correlation of general macro-nutrients and diabetes risk markers. 

Left boxplots illustrated the general intake of macro nutrients stratified according to the diabetes status. There 
is no significant difference between the groups. The correlation heatmap shows that these macronutrients do 
not correlate with diabetes markers. 
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 Arrhythmic microbial signature to classify T2D  

The preassigned 87 arrhythmic OTUs (Figure 46) were further analyzed to determine a T2D 

associated risk signature based on disrupted rhythmicity in T2D compared to nonT2D. We determined 

13 out of 87 OTUs, which showed differences in their harmonic fitting. Comparing these 13 OTUs (s-

arOTUs) with the OTUs that were showing significant differences in their relative abundance (Figure 

43), showed an overlap of 100% (Figure 49 B).  

With the aim to identify a microbial signature differentiating between T2D and nonT2D, we 

further trained a generalized linear model (GLM) following a binomial distribution of a logistic 

regression. In the GLM model, the relative abundance values of the 13 s-arOTUs were considered as 

dependent variables, as well as BMI.  

 

 

Figure 49 Prediction and classification of T2D based on selected arrhythmic risk signature. 

(A) Number of KORA subjects of the prospective sub-cohort with samples from both year 2013 and 2018 (N = 
699 subjects). (B) Left panel, Among the 87 arOTUs (green circle), which oscillated in controls (Figure 46) but are 
arrhythmic in subjects with T2D or BMI ≥ 30, 13 OTUs (blue circle) showed differential rhythmicity based on 
DODR analysis and overlapped with the previously defined 30 OTUs (yellow circle) with a significantly different 
relative abundance (panel A). These 13 selected arrhythmic OTUs (s-arOTUs) were used for further generalized 
linear model. Right panel, heatmap representing the relative abundance of the s-arOTUs according to the time 
of day. 

 

The results were collated in a ROC curve reflecting the model’s performance in terms of sensitivity and 

specificity (Figure 50). To highlight the importance of the s-arOTUs, we generated a control set of OTUs, 

which were not becoming arrhythmic in T2D. Results showed a significant better performance of s-

arOTUs with a mean AUC of 0.79 for s-arOTUs compared to mean AUC of 0.59 (p-value = 2.03-8), 

highlighting the validity of the arrhythmic OTUs.  

A B 
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Figure 50 ROC curve of generalized linear model for T2D classification based on s-arOTUs.  

Curves of receiver operating characteristics (ROC) for classification of T2D in an independent test set. The 
generalized linear model is based on 13 s-arOTUs +/- BMI (blue curves) as well as on 100 randomly selected sets 
of 13 OTUs (grey curve). The distribution of AUCs are shown by boxplots and are significantly different between 
the types of models. 

 

 Implementation of a machine learning approach for T2D classification  

We further implemented a random forest model to distinguish between T2D and nonT2D. To 

increase validity, reproducibility and reliability, we performed the machine learning approach multiple 

times over a nested 20% test and 80% training set including a 5-fold cross validation. Input of the 

random forest model were 425 OTUs which were indentified in ≥ 10% of the population with at least 

0.1% relative abundance. Of note, the 425 OTUs were determined based on 1,340 subjects, which 

differed from the 422 OTUs (N = 1,967 subjects), which were considered for circadian analysis in the 

previous section (Table 15). After each iteration, a subset of the most important OTUs was selected 

based on the lowest error rates generated in the 5-fold cross-validation. For the final model, OTUs, 

which were picked at least 50-times, were selected.  
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Figure 51 Random forest model for T2D classification. 
(Curves of receiver operating characteristics (ROC) for a random forest model using a training set (train set) of 
80% of the data (dashed lines in the left panel) as well as using a test set with the remaining 20% of the data 
(ROC curves in the right panel). The mean AUC over 100 random data splits is shown. The boxplots below the 
curve panels show the distribution of AUCs across all generated models for the corresponding training and test 
sets, respectively. 
 
With an AUC of 0.73, the model was able to distinguish between nonT2D and T2D. BMI as an additional 

variable increased the AUC to 0.77. To verify that the classification was driven by the selected OTUs 

and not by BMI alone, we generated a GLM out of random selected OTUs. The random model without 

BMI worked nearly as well as a random classifier (Figure 52 A), while BMI increased the performance 

from AUC of 0.59 to 0.73 (Supplementary Table 3).  

Nevertheless, the model performed significantly worse than the rfOTUs and/or s-arOTUs, 

which highlights the validity of the selected rfOTUs and s-arOTUs. Additionally, we trained a random 

forest model with the outcome ‘obesity’. The performance of the random forest model was poor and 

even on the 80% training set, the model only reached an AUC of 0.84 (5-fold CV AUC = 0.67). Applying 

the selected features of the random forest model on the 20% test set showed a poor performance of 

AUC = 0.63 differentiating between individuals with a BMI ≥ 30 and BMI < 30 (Figure 52 B). Further, 

the obesity random forest feature list was used to classify T2D and was compared with a random set 

of OTUs for the same number of features. Both models were lacking behind in their classification of 

T2D and showed similar poor results, highlighting that a random OTU list performs only as good as an 

obesity-trained list (Figure 52 B). Considering BMI not only as an additional feature in the classification 

of T2D but also as a random effect in the random forest model, we implemented a mixed effect random 

forest model (MERF) including BMI as random effect. As in the random forest model, we split the data 

in training (80%) and test (20%) set, performed a 5-fold cross validation and repeated the procedure 

100 times (Figure 53). 



 IMPLEMENTATION OF A MACHINE LEARNING APPROACH FOR T2D CLASSIFICATION 

 

99 

 

 

 

Figure 52 Random forest model for classification of obesity. 

(A) ROC curve for classification of T2D in an independent test set. Generalized linear model is based on 13 
randomly selected control OTUs +/- BMI (rndOTUs, grey curves). The iterative calculated AUCs are shown by 
boxplots and are significantly different between the models. (B) ROC curve of random forest trained model for 
classification of individuals with BMI ≥30 and BMI <30 with mean AUC for the training set and 5-fold cross 
validation. Left ROC curve represents the results out of random forest model for an independent validation set. 
Iterative AUC values are shown in the boxplot below the curve. 

 

The model (mixedRF) performed significantly worse than the s-arOTUs and was only able to classify 

T2D with an AUC of 0.69, which is even worse than BMI only with a random set of OTUs (Figure 52 A, 

Supplementary Table 3). Interestingly, the mixedRF selected 63 OTUs (out of 425 OTUs) in total, 

among which all s-arOTUs were present.  

 

 

Figure 53 Mixed effect random forest model for T2D classification.  

The mixed effect random forest model, taking BMI as random effect, selects 63 OTUs as important features. The 
mixedRF-OTUs encompass the 13 s-arOTUs.  
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Same number of OTUs (63 OTUs) were selected by a random forest model which was only trained on 

OTUs (rfOTUs) being important in the differentiation of diabetes from nonT2D. This, model, when 

including BMI, reduced the from 63 OTUs to 14 OTUs (rfOTUs+BMI). The inclusion of the BMI did not 

only increase the predictability of the model, but it also promoted a proper feature selection, resulting 

in OTUs that were all determined as significantly different in their relative abundance (Figure 43). 

 

 Validation of the robustness of the random forest model 

The strength of the machine learning algorithm is its bootstrapping approach generating multiple 

decision trees, which enables the handling of unbalanced and large data sets.  

 

 

We generated an iterative nested 5-fold cross-validation approach, repetitively selecting a random 

train (20%) and test subset (remaining 80%), for which the training set consists of an equal distribution 

of cases and controls (as in the complete data set). The training was performed on an equal number 

of T2D and nonT2D subjects (N = 300) and cross validated in a 5-fold approach (Figure 54 A). The 

selection of an appropriate number of samples, used for the training set, was important to minimize 

the error rate. In a repetitive setting, the number of samples included for training was increased to 

generate a learning curve. The curve, which reached a steady state, resulted in the smallest error rate 

with 200 samples (nonT2D N = 100 subjects; T2D N = 100 subjects), and decreased the variation of 

error with an increase in included samples (Figure 54 A). Here, feature selection was based on the 

Figure 54 Performance of the random forest model for selected number of samples. 

 (A)  Learning curve showing how sample size, ranging from 20 to 450, influences model robustness. Note that 
data sets used for training are always balanced for equal numbers of T2D and nonT2D patients. Models were 
trained with n = 300 samples (dashed line), where the out of bag (OOB) error is stable. (B) Confusion matrix 
showing the mean number of patients and standard deviations across 100 test splits assigned to T2D and 
nonT2D correctly (blue) or incorrectly (red). 

 

A B 
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cross-selected features ranked by the Gini index. At the end of the iterative feature selection approach, 

only the features which were selected in at least 50% of all random models are considered as being 

important.  

Besides the already shown AUC value for the random forest model implemented for T2D 

classification (rfOTUs + BMI), we further validated the performance of the model. Overall, the model 

was able to truly detect T2D cases with a sensitivity of 72.25% - on average 112 out of 150 T2D cases 

were identified by the model. With a specificity of 74.12%, the number of falsely classified T2D cases 

was high; approximately 106 nonT2D cases were classified as having T2D. The number of individuals 

assigned to a health group according to the model’s prediction varied between the 100 randomly 

repeated models in approximately five individuals and showed an accuracy of 73.15%. (Figure 54 B). 

Focusing on the sensitivity of the model, we generated a precision-recall curve, which showed the 

positive predicted value against the true positives. When reaching an average AUCPR of 0.77, a decent 

classification of T2D and nonT2D was achieved. The curve for the GLM of the s-arOTUs performed 

slightly better with an AUCPCR of 0.79, but with much fewer false positives then the random forest 

model. According to Matthews’s correlation coefficients and F1 scores, both models performed best 

with a probability threshold between 0.2 and 0.3 resulting in a F1 score of 0.5 for both models. The 

correlation coefficient of the random forest model was slightly higher when reaching a score of 0.5 for 

a predictive value of 0.21, while the score of the GLM was 0.38 for a predictive value of 0.24.  

 

 

Figure 55 Validation of the performance of the random forest model and GLM. 

 (A) Left panel: Precision recall curve of the random forest model for T2D classification trained on 425 OTUs and 
BMI (compare to Figure 51). We repeatedly (100 times) split the data set randomly into training (80%) and test 
(20%) sets and computed the mean AUPRCs for each split. The distribution of the resulting AUPRCs across all 
generated models for the corresponding test sets is shown below. Right panel: mean F1 scores (orange dashed) 
and Matthews correlation coefficients (orange solid) computed on the test sets. (B) As panel A, but using a GLM 
of the 13 s-arOTUs including BMI. 
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To deal with compositionality of bacterial data, we repeated the training of the model with two log 

transformed input data sets. We performed the training on a centered scaled log transformed data set 

and on the paired log ratio of OTUs (N = 70,000). Following the same approach as for the original 

random forest model, the classifier was trained and tested with the transformed data input. Results 

showed that the AUC values for both data sets, with and without considering BMI as an additional 

classifier, performed worse in the identification of T2D cases compared to the relative abundance-

based random forest model (Figure 56, Supplementary Table 3). This showed that, in this study, the 

compositionality did not affect the performance of the random forest model. Further, better results 

are achieved when including relative abundance values.  

 

 

Figure 56 Implementation of random forest for log-transformed data adjusting for compositionality. 

Random forest model accounting for possible compositionality bias by training on centered log ratio transformed 
data (brown) or log ratios (n = 70,000 pairs, green). The models were trained with (solid) and without (dashed) 
BMI as variable. All other settings, e.g. data splitting, is the same as in the random forest model trained on relative 
abundances (see Figure 51). The boxplots show the range of AUC values for all models computed by using 100 
random splits. 
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4.6. Arrhythmic bacterial risk signature for T2D risk profiling 

Comparing the two approaches for the selection of T2D differentiation OTUs showed that the 

selected 13 s-arOTUs were fully overlapping with the 14 rfOTUs+BMI. This signature included 

Bifidobacterium longum (OTU 37), Clostridium celatum (OTU 101), Intestinibacter bartletti (OTU 63), 

Romboutsia ilealis (OTU 76), and several taxa closely related to Faecalibacterium prausnitzii (OTU 

34127, OTU 3247, OTU 1860, OTU 11374, OTU 1014) and Escherichia coli (OTU 12, OTU 34182). The 

above mentioned 13 OTUs did not only differ in their relative abundance between T2D and nonT2D 

(Figure 57), but they also showed a disruption in rhythmicity resulting in different peaking hours 

according to health status (Figure 49). 

 

Figure 57 Selected OTU indicating a T2D bacterial risk signature. 

(A) Heatmap showing the log-transformed relative abundance of the OTUs (y-axis) selected by the random forest 
model. Individuals (x-axis) are grouped according to their T2D status. Taxonomic classification of OTUs is shown 
by their species names and 16S rRNA gene sequence identities (%); bold letters indicate ≥97% identity (proxy for 
species level). To the right, overlap representation of the 14 rfOTUs (orange, according to C) and the 13 s-arOTUs 
(dark blue). (B) ROC curve for classification of T2D in an independent test set consisting of 20% of the data. The 
generalized linear model is based on 14 selected OTUs +/- BMI (rfOTUs, orange curves) as well as on the average 
performance of 100 random sets of 14 OTUs (rndOTUs, grey curve). The distribution of AUCs of all models is 
shown by boxplots and differed significantly between the three model types. 

 
With the aim to generate a model which could be used as a prediction/classification models for other 

studies, we trained a GLM including rfOTUs+BMI differentiating between T2D and nonT2D. Random 

sets of 14 OTUs were selected 100 times and went into a GLM. The results show that a random set of 

OTUs performed significantly worse in the classification of T2D than the random forest selected OTUs 

(AUC rfOTUs+BMI = 0.78; mean AUC of random OTUs = 0.60). As expected, the GLM performed as 

good as the s-arOTU model. For further analysis, we selected s-arOTUs as bacterial risk signature 

(Supplementary Table 3).  
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 Additional diabetes risk markers as classifier for T2D 

The s-arOTUs GLM showed an increased AUC when including BMI as an additional classifier. In 

the commonly models used for prognostic and diagnostic of T2D, risk markers, such as bodyweight, 

lifestyle, and blood values, are important markers. Based on these factors, the classification of T2D is 

reliable and precise (Gillies, Lambert et al. 2008, American Diabetes 2017, Skyler, Bakris et al. 2017). 

The inclusion of microbial data and the observation of different compositions of the human gut 

microbiome associated with metabolic health or issues thereof, should not be seen as a replacement 

of the known diabetes risk classifiers. It should serve as an additional factor helping to understand the 

impact of metabolic health better. Generating different random forest models, based on the metabolic 

risk markers with and without OTUs, showed the added value of bacterial taxa in the classification of 

T2D (Figure 58). The introduced s-arOTU risk signature, based on 13 OTUs and BMI, was able to 

differentiate T2D with an AUC of 0.79. The model included BMI or Hip-Waist (HW) ratios. The 

performance of models using any miscellaneous risk markers (blood pressure, parental T2D, age, hip-

waist ratio (HW), smoking, and physical activity) were improved, when OTUs were included. In a 

stepwise procedure, we added BMI and HW as additional classifiers in the random forest model. The 

inclusion of BMI instead of HW performed slightly better (AUC: 0.82 vs. AUC 0.83). Overall, when 

considering all miscellaneous risk makers, and BMI and HW, the inclusion of OTUs additionally 

improved the performance to an AUC of up to 0.87. The selected 9 OTUs of the random forest model 

were all overlapping with the 13 s-arOTUs. This verified the importance of at least 9 the 13 s-arOTUs 

in T2D classification and suggests the remaining 4 are also important.  
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Figure 58 The influence of bacterial taxa in T2D classification based on commonly used risk marker. 

 A random forest model trained on miscellaneous diabetes risk markers – blood pressure, parental T2D, age, hip-
waist ratio (HW), smoking, and physical activity – to classify T2D. Boxplots depict the increase of AUC values by 
including either BMI or HW, as well as microbial taxa. The AUC increased from 0.79 to 0.87 by including OTUs in 
the classification model. The random forest models with OTUs including all additional diabetes risk markers 
selected 9 OTUs as important features, all of them are overlapping with the 13 s-arOTUs.  
 

To better understand the impact of each metabolic risk factor towards the classification of T2D, all 

variables were tested. It was shown that the variable ‘age’ was the most influencing one. For instance, 

one model was built on risk markers only, the other included of s-arOTUs (Figure 59 A). The 

corresponding mean AUC values increased with s-arOTUs included (Figure 59 A, table: first column = 

AUC of miscellaneous marker only, second column with dashes = AUC of miscellaneous risk marker 

including s-arOTUs). The AUC increased from 0.76 to. 0.79 for BMI and HW, and from 0.77 to 0.79 by 

adding ‘gender’ as an additional variable (Figure 59 A, left graph). After considering age, the inclusion 

of OTUs did not improve the models’ performance substantially, suggesting that age is one of the most 

important factors in the classification of T2D. Thus, excluding age from the set of miscellaneous risk 

markers helped to evaluate the impact of s-arOTUs in the T2D classification better. Results of these 

models showed that the inclusion of the 13 s-arOTUs resulted in an increased AUC for all models 

excluding age (Figure 59 A right graph). The benefit of the 13 selected s-arOTUS became clear when 

including randomly selected OTUs instead. With random OTUs, any model performed equally or worse 

independent of the specific OTUs used (Figure 59 B).  
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Figure 59 Combination of s-arOTUs and miscellaneous risk marker.  

(A) Left Boxplot shows the AUC values of a GLM generated for the shown miscellaneous risk marker (BMI, Hip-
Waist (HW), age, parental T2D, lifestyle (smoking, physical activity), blood pressure (BP)) without OTU (left filled 
boxes) and with s-arOTUs (right shaded boxes). Bars in the lower part of the plot shows the included risk marker. 
Stepwise inclusion of another risk marker. Boxes and bars are labelled in the same color. Tables shows the AUC 
values with and without the inclusion of s-arOTUs. The right boxplot as the left boxplot but without inclusion of 
the variable age. (B) Classification of T2D including 13 randomly selected OTUs (shaded boxes) and stepwise 
inclusion of miscellaneous risk marker as in A.  
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4.7. Impact of Metformin on microbiota changes 

Metformin is a blood glucose level lowering drug prescribed for T2D especially if patients are 

obese. Metformin is  recommended as the first-line treatment in T2D (American Diabetes 2017).  It has 

been shown that intake of metformin alters the human gut microbiota, suggesting that compositional 

changes observed for T2D patients were mainly driven by the medication and not by the disease 

(Forslund, Hildebrand et al. 2015, Pryor, Norvaisas et al. 2019). To evaluate the influence of metformin 

in the KORA2013 cohort, and, thus, in the selection of microbial species related to T2D, we analyzed this 

medication in more detail.  

 

Figure 60 Influence of metformin in classification of T2D.  

(A) Differences in alpha-diversity between T2D cases taking metformin (T2D+MET, darkred; N = 132 subjects) 
and T2D cases without metformin treatment (T2D-MET, red; N = 136 subjects). (B) Multivariate nonparametric 
permutational analysis showed significant differences in the composition of the gut microbiota between 
metformin treated T2D cases and not treated (p-value = 0.001). The nMDS plot shows a shift of the microbiota, 
but with several individual overlaps between the groups and no clear distinction.   

 

The cohort was stratified according to T2D either taking or not taking metformin (T2D+MET; N = 132 

subjects, T2D-MET; N = 136 subjects). The number of observed ‘species’ and bacterial diversity was 

significantly increased in T2D+MET, which was in accordance with previous studies (Forslund, 

Hildebrand et al. 2015, Pryor, Norvaisas et al. 2019). There was also a significant imbalance in BMI and 

age, which indicated that T2D+MET had an increased BMI but were younger compared to the T2D-

MET group (Figure 60 A). This result seemed to be in contradiction with the known reduced richness 

and diversity in obesity and age (Yatsunenko, Rey et al. 2012, Le Chatelier, Nielsen et al. 2013, O'Toole 

and Jeffery 2015). However, comparing the composition of the gut microbiota between individuals 

with and without metformin showed a significant separation (p-value = 0.0001) into two groups (Figure 

60 B). 
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Figure 61 Association of metformin and the selected risk signature.  

(A) ROC curves of random forest model to evaluate the effect of metformin intake in T2D. Individuals are 
stratified in three groups, T2D + MET compared to nonT2D compared to nonT2D (black), T2D – MET (green) and 
T2D +/– metformin (grey). In case of the last group, classification is based on the outcome ‘metformin’. Iterative 
AUCs are represented in boxplots for training and independent test sets, as well as the mean AUC of all groups 
for training and independent test. (B) ROC curve based on generalized linear regression model for 13 selected 
arrhythmic OTUs (Figure 55, s-arOTU + BMI) for differentiation of metformin in T2D. (C) Diurnal profile of the 
relative abundance of alpha-diversity indicated by richness and Shannon effective number of species and the 
phyla Bacteroidetes and Firmicutes of T2D subjects who take metformin (+MET, grey; N = 132 subjects) or not (–
MET, black; N = 136 subjects). Data point were connected by straight lines to illustrate that no significant rhythm 
based on a fitted cosine-wave curve was found (cosine-wave regression, p-value > 0.05). (D) Circadian analysis 
of rhythmic (white) and arrhythmic (grey) OTUs and their relative abundance in percent based on JTK_CYCLE, 
cosine-wave regression or harmonic cosine-wave regression in T2D – MET (left) and T2D + MET (right). (E) Venn 
diagram illustrating no overlap between the s-arOTUs and all identified rOTUs in either T2D – MET or T2D + MET 
based on cosine-wave regression analysis (P ≤ 0.05). 

 

Previous studies found that metformin synchronizes peripheral circadian clocks (Barnea et al. 2012). 

Thus, three random forest models were trained to classify either T2D for the two subgroups (T2D+MET 

and T2D-MET against nonT2D individuals) or to differentiate between T2D cases taking metformin or 

not taking the medication. The performance of these models was comparable to a classification model 

published by Forslund et al. (2015). The generated random forest model was not able to distinguish 

between nonT2D and T2D for individuals not taking metformin (rfT2D+ AUC = 0.60) (Figure 61 A). 

However, the differentiation of nonT2D and T2D in individuals taking metformin (rfT2D+ AUC = 0.87) 
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was much better. A model trained on T2D cases only, but for the endpoint metformin intake, was able 

to classify individuals with T2D according to taking metformin or not taking metformin (rfMET AUC = 

0.82). Finally, comparing the selected feature list for the metformin-based analysis with the 13 s-

arOTUs, an overlap of 8 OTUs was found for selected OTUs present in of all three models. Further, one 

OTU was additionally picked up in the rfT2D+ model.  

Comparing the beta estimator, the margin by which an s-arOTU contributed to the classification 

of T2D, showed no differences when stratifying the cohort according to metformin intake before. Next, 

the generated GLM for the classification of T2D was used to differentiate metformin intake in T2D 

cases. This GLM model was not able to distinguish between T2D cases, whether taking metformin or 

not. This verified that even though a random forest model trained on the outcome ‘metformin’ 

performed with an AUC of 0.82 in distinguishing +MET-T2D and +MET-T2D, the s-arOTUs are not biased 

for metformin (Figure 61 B). We further analyzed the data obtained from T2D cases, and divided them 

into the two treatment groups, i.e., with and without metformin. Interestingly, there was a 1.4% 

increase for rhythmic OTUs in T2D+MET when comparing T2D with or without metformin (i.e., +MET 

versus –MET). Of those, 14 OTUs gained rhythmicity in T2D regardless of taking metformin or not. 

When analyzing the T2D+MET and T2D-MET groups separately, 9 OTUs of the 14 OTUs showed 

significant rhythms, but they were restricted to T2D+MET and not present in T2D-MET. These results 

indicate that MET treatment may induce rhythmicity of specific taxa. Nevertheless, none of the 14 taxa 

were among the 13 s-arOTUs used for classification or prediction of T2D in the validation and 

prospective cohorts before. Although metformin was found to synchronize peripheral circadian clocks 

(Barnea, Haviv et al. 2012), indicating that metformin may directly interfere with the circadian analysis, 

this substance did not change rhythmicity of the alpha-diversity and any phylum, nor the overall 

percentage of rOTUs in subjects with T2D was changed in our study (Figure 61 C, D). Importantly, none 

of the rOTUs identified in +/-MET-T2D overlapped with the 13 selected arrhythmic OTUs (s-arOTUs) 

used for the classification of T2D (Figure 61 E). Thus, we were able to replicate the results that the 

human gut microbiota is altered after metformin intake, but the before selected risk signature (s-

arOTUs) was not driven by the medication.  
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4.8. Validation of T2D risk signature in other population-based cohorts  

In the previous part it has been shown that the composition of the human gut microbiota follows 

a circadian rhythm. Further, a bacterial risk signature for the classification of T2D was determined. The 

selection of specific OTUs was conducted using two approaches.  For the next part, it was examined if 

the risk signature can be applied to other cohorts and used to classify T2D. 

 

 T2D classification in an independent German cohort, FoCus 

The methods used for KORA2013 were applied to FoCus, which is an independent German cohort 

with the study center in Kiel (FoCus: nonT2D N = 1,070 subjects, T2D N = 293 subjects) (Relling, Akcay 

et al. 2018). The above obtained results for KORA2013 could be replicated. For instance, loss of daily 

oscillations in richness and alpha-diversity was associated with a significant reduction of rhythmic 

OTUs in T2D (1.4% rOTUs) compared to nonT2D (8.5% rOTUs) (Figure 62).  

 

 

Figure 62 Circadian analysis of the FoCus cohort. 

Diurnal profiles of alpha-diversity in 1,363 subjects. Significant rhythms are illustrated with fitted cosine-wave  

curves (cosine-wave regression, p-value ≤ 0.05, non-significance is shown by straight lines between data points. 
Right panel: Pie chart showing the amount of rhythmic (white) and arrhythmic (grey) OTUs and their relative 
abundance in percent. 

 

Based on a BLAST search, we determined which OTUs from the FoCus cohort were reflecting the s-

arOTUs of the KORA2013 cohort. Their differences in relative abundances between nonT2D and T2D 

were examined (Figure 63, Table 16). A possible explanation for differences in relative abundance 

between OTUs of KORA2013 and the assigned s-arOTUs of FoCus could be the limitation of the short 

amplicon sequenced and, subsequent, limited BLAST results. As seen in Table 10, some differences in 

the taxonomic classification of the assigned OTUs causing some discrepancy in species classification. 

In combination with BMI, the relative abundance values of FoCus were considered as input for the 
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imported KORA2013 GLM, classifying T2D with an AUC of 0.76 and values for sensitivity and specificity 

of 75% and 69%, respectively.  

 

Figure 63 Performance of s-arOTUs in the classification of T2D in FoCus.  

(A) Heatmap showing the assigned OTUs for the s-arOTUs based on BLAST search. Individuals are grouped 
according to diabetes status. Taxonomies are determined by EzBioCloud database search, best matches are 
shown beside each OTU with the designated taxonomic name and identity value in brackets. (B) ROC curve for 
s-arOTUs’ GLM model trained on the KORA cohort in 2013 used to classify T2D in FoCus. (C) Confusion matrix 
showing the performance of the KORA model applied to FoCus.  

 

The confusion matrix of the results obtained by the GLM also showed that 75% of the T2D cases were 

correctly predicted. However, the model lacked in performance to identify T2D cases correctly, with a 

large number of false negatives (Figure 63 C).  

Table 16 Results of BLAST search for s-arOTUs in the FoCus cohort. 

KORA s-arOTUs Species name Similarity Diff/Total Completeness (%) 

OTU_101 Clostridium celatum 100 0/402 100 

OTU_1014 Faecalibacterium prausnitzii 95.02 20/402 99.9 

OTU_11374 Eubacterium coprostanoligenes 95.53 18/403 99 

OTU_12 Shigella flexneri 100 0/427 100 

OTU_13827 Faecalibacterium prausnitzii 95.77 17/402 99.9 

OTU_1860 Faecalibacterium prausnitzii 99.25 3/402 99.9 

OTU_3247 Ruminococcus callidus 99.75 1/402 100 

OTU_34127 Faecalibacterium prausnitzii 99.25 3/402 99.9 

OTU_34182 Mesosutterella multiformis 100 0/427 100 

OTU_37 Bifidobacterium longum subsp. longum 100 0/407 100 

OTU_45 Faecalibacillus intestinalis 100 0/426 97.4 

OTU_63 ntestinibacter bartlettii 100 0/401 100 

OTU_76 Romboutsia ilealis 99 4/401 100 

OTU_101 Clostridium celatum 100 0/402 100 

 

A B C 
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The reduced performance of the KORA2013 s-arOTUs classifying T2D in FoCus could be due to regional 

differences, which were already shown to have an impact on overall bacterial composition of the gut 

(Figure 31) (He, Wu et al. 2018).  

 

 Prediction of incident T2D cases in KORA2018  

Taking advantage of the prospective sampling in KORA2018, we aimed to predict incident T2D 

cases. Microbial data from KORA2013 were used in the GLM s-arOTU model to differentiate between 

nonT2D and individuals under risk. Since samples were taken from 699 individuals again in 2018, it was 

possible to assign newly diagnosed T2D cases (N = 20 subjects). Using these, we were able to evaluate 

the predictive power of the model. To assign the s-arOTU from KORA2013 to corresponding OTUs in 

KORA2018, a BLAST search was performed, mapping the sequences of s-arOTUs all OTUs of the KORA2018 

subcohort. The top hits were further verified by EzBioCloud ensuring correct assignments (Table 17). 

 

 

Figure 64 Arrhythmic microbial signature for prediction of T2D. 

(A) Predictive analysis of T2D in the paired KORA2018 subcohort (samples from 2013, top, and 2018, bottom). (B) 
The prediction of incident T2D cases (iT2D) is based on the 13 s-arOTUs +/– BMI in the regression model to the 
right. Baseline data is from nonT2D individuals from 2013. Endpoint is iT2D in 2018 (N = 20 subjects). (C) 
Confusion matrices for the classification and prediction of T2D. Upper matrices show the True Positive 
(sensitivity) and True Negative values (blue) as well as the False Positive and False Negative (specificity) values 
(red) for the prediction of incident T2D (iT2D). Lower matrices show the values for the classification of T2D 
(pT2D).  

 

The model reached an AUC of 0.69 for s-arOTUs and 0.79 for s-arOTUs + BMI. Based on a microbial risk 

signature of 13 OTUs, the majority of persisting T2D cases (pT2D, N = 17 subjects) and incident T2D 

cases (iT2D, N = 20) were determined, resulting in a sensitivity of 79% and 76% for pT2D and iT2D, 

respectively. Specificity was high, but resulted in many false positives, which is a limitation (specificity 

pT2D = 35%; specificity iT2D = 35%). Thus, nonT2D individuals were wrongly assigned to be under risk 
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(Figure 64 C). The lack in specificity was already apparent in the classification of T2D in the KORA2013 

data and became even more obvious for the FoCus cohort. 

 

Table 17 Results of BLAST search of s-arOTUs and matched KORA2018 subcohort 

KORA s-arOTUs Species name Similarity Diff/Total Completeness (%) 

OTU_45 Faecalibacillus intestinalis 99.56 2/454 97.4 

OTU_12 Shigella flexneri 99.34 3/455 100 

OTU_76 Romboutsia sedimentorum 98.6 6/429 94 

OTU_63 Intestinibacter bartlettii 99.3 3/429 100 

OTU_37 Bifidobacterium longum subsp. longum 99.31 3/435 100 

OTU_1014 Faecalibacterium prausnitzii 97.44 11/430 99.9 

OTU_101 Clostridium celatum 99.07 4/430 100 

OTU_3247 Faecalibacterium prausnitzii 96.74 14/430 99.9 

OTU_1860 Faecalibacterium prausnitzii 99.07 4/430 99.9 

OTU_13827 Faecalibacterium prausnitzii 96.05 17/430 99.9 

OTU_34182 Shigella flexneri 99.34 3/455 100 

OTU_11747 Faecalibacterium prausnitzii 96.28 16/430 99.9 

OTU_11374 Faecalibacterium prausnitzii 96.28 16/430 99.9 

OTU_34127 Faecalibacterium prausnitzii 96.28 16/430 99.9 

 

 Validation of arrhythmic risk signature in the TwinsUK cohort  

TwinsUK is a cohort studies in Great Britain thus, deviations should be pronounced compared to 

the above mention FoCus cohort, since geography influences the results. For TwinsUK, the prediction 

was conducted on baseline OTU relative abundance values from 1,399 individuals with known T2D 

status (nonT2D, N = 1,259; pT2D, N = 94; iT2D, N = 46). As before for FoCus, s-arOTUs of KORA2013 taken 

as query for a BLAST search in the TwinsUK-OTUs and top hits were verified by EzBioCloud. However, 

in TwinsUK, the V4 16S rRNA gene region was targeted for sequencing (~250bp amplicon length) which 

complicated the correct assignment of corresponding s-arOTUs (Table 18). Still, both cohorts’ 

sequencing data overlapped in the V4 region. To avoid using misclassified OTUs we further checked 

the V4 sequences in EzBioCloud verifying taxonomic assignment. Next, the relative abundance of the 

selected OTUs between nonT2D and T2D for TwinsUK were analyzed (Figure 65).  
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Table 18 Results of BLAST search of s-arOTUs and TwinsUK OTUs 

KORA s-arOTUs TwinsUK Name Similarity Diff/Total n Completeness 

OTU_76 OTU_63 Romboutsia ilealis 98.76 3/242 94 

OTU_63 OTU_35 Intestinibacter bartlettii 100 0/242 100 

OTU_45 OTU_24 Faecalibacillus intestinalis 100 0/242 97.4 

OTU_37 OTU_27 Bifidobacterium adolescents 100 0/243 100 

OTU_34182 OTU_4 Escherichia coli 100 0/243 98 

OTU_34127 OTU_6054 Faecalibacterium prausnitzii 97.94 5/243 99.9 

OTU_3247 OTU_2975 Faecalibacterium prausnitzii 96.3 9/243 99.9 

OTU_1860 OTU_1555 Faecalibacterium prausnitzii 97.12 7/243 99.9 

OTU_13827 OTU_7 Faecalibacterium prausnitzii 98.77 3/243 99.9 

OTU_12 OTU_8045 Escherichia coli 96.69 8/242 98 

OTU_11374 OTU_2639 Faecalibacterium prausnitzii 95.47 11/243 99.9 

OTU_1014 OTU_2325 Faecalibacterium prausnitzii 95.06 12/243 99.9 

OTU_101 OTU_59 Clostridium celatum 100 0/243 100 

 

Based on the previously trained GLM of KORA2013, the model was able to classify T2D (pT2D) with an 

AUC of 0.68 and predict T2D (iT2D) with an AUC of 0.69 using the risk signature of KORA2013. Again, the 

number of false positives was high, which was reflected by a poor sensitivity of 30% for pT2D and 20% 

for iT2D. The true positive rate for iT2D was 56% and, thus slightly higher for pT2D (sensitivity = 63%). 

 

Figure 65 Validation of risk signature for predication and classification in the TwinsUK cohort. 

(A) Confusion matrix for the classification and prediction of T2D. Upper left matrix shows the True Positive 
(sensitivity) and true negative values (blue) as well as the false positive and False Negative (specificity) values 
(red) for the prediction of incident T2D (iT2D) in the paired KORA subcohort. Lower matrix shows the values for 
the classification of T2D (pT2D). (B) Heatmap showing the log-transformed relative abundance of the TwinsUK 
OTUs (y-axis) identified as representatives of the a-sprouts. Individuals (x-axis) are grouped according to their 
T2D status. Taxonomic classification of OTUs is shown by their species names and 16S rRNA sequence similarity 
(%), bold indicates ≥97% similarity. (C) Classification (pT2D, straight blue line, AUC = 0.69) and predictive analysis 
of T2D (iT2D, dashed blue line, AUC = 0.68) in independent TwinsUK cohort. The prediction of incident T2D cases 
(iT2D) is based on the 13 s-arOTUs +/- BMI. 
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We showed that the KORA2013 based bacterial risk signature and GLM model could be transferred to 

three cohorts (KORA2013, FoCus and TwinsUK) to classify and predict T2D. Nevertheless, it was not 

possible to obtain similar results in all three cohorts. 

 

4.9. Functional analysis of arrhythmic bacterial risk signature and its 

association with T2D 

Shotgun metagenomic sequencing for the analysis of the bacterial composition on a strain level 

was conducted by Prof. Paul O’Tool’s group from the School of Microbiology and APC Microbiome 

Ireland, University College Cork, Ireland. This allows to perhaps classify bacteria in beneficial and 

harmful, since each diabetes status might overrepresent certain taxa. This could allow to understand 

the underlying functional mechanism of the microbes in the gut and, thus, co-occurrence of certain 

bacteria might link health with causality. 

A subset of individuals from the KORA cohort (N = 50 subjects) with data from both years, 2013 

and 2018, were selected for metagenomic sequencing (n = 100 samples). The individuals (Table 19) 

had been classified as follows:  

• No metabolic syndrome in year 2013 and 2018 (nonT2D) 

• No metabolic syndrome in year 2013, but developed T2D in 2018 (incident T2D, iT2D) 

• prediabetic in year 2013 without developing T2D in 2018 (nonT2D) 

• prediabetic in year 2013 with developing T2D in 2018 (iT2D) 

• T2D in year 2013 and 2018 (remaining T2D, rT2D) 

After conducting metagenome sequencing and analyzing the data, 16 bacterial metabolic pathways 

were identified to be significantly different (p-value ≤ 0.1) in gene amounts between nonT2D and pT2D. 

Of those, 11 were shown to be increased in pT2D (Supplementary table 4). Only seven pathways were 

significantly different between iT2D and nonT2D ( 

Supplementary table 5), whereas only three were increased in iT2D without any overlaps between 

pT2D and iT2D.  

Assuming that different pathways are associated with a different stage of the diabetes. It has 

to be noted that the number of samples within one comparison group (pT2D or iT2D) was low which 

could be one possible explanation for the lack of overlaps. Significant differences found in one-to-one 

comparisons were not detected anymore after adjusting for multiple comparisons. 
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Table 19 Samples selected for Metagenome Shotgun Sequencing 

 Year no. mean Age Gender BMI Mean ± SD HbA1c 

nonT2D 2013 8 57 50% male 50% obese 5.41 ± 0.31 

 2018 8 62  50% obese 5.42 ± 0.30 

       

iT2D 2013 20 59 60% male  6.06 ± 0.33 

 2018 20 64   7.10 ± 0.86 

       

pT2D 2013 14 62 47% male  7.64 ± 1.19 

 2018 14 67   7.75 ± 1.19 

       

Prediabetes 2013 8 59 50% male 50% obese 5.33 ± 0.35 

 2018 8 64  50% obese 5.755 ± 0.36 

TOTAL  100     

 

Next, a random forest based approach was applied to choose the most important pathways 

differentiating T2D from nonT2D. After multiple nested and cross-validated random forest analyses, a 

list of 30 pathways was considered for further analysis. Based on these 30 selected pathways, the 

model was able to distinguish between T2D and nonT2D with a mean AUC of 0.81 (Figure 66 A, B). To 

show the contribution of the 30 selected pathways towards T2D classification, a random set of 30 

pathways, excluding the 30 previous selected ones, was generated. This random set of pathways was 

using in a random forest approach as before. However, this resulted in a significant reduction of the 

AUC to 0.60 (P < 8∙10-10) (Figure 66 B). In order to address the compositionality of microbial data 

(Tsilimigras and Fodor 2016) , we repeated the above steps using a centered log-scale transformation 

of the pathway abundances for the 30 originally selected pathways above. The pattern remained 

invariant, with 27 of the 30 pathways retained (Figure 66 B). This indicates a strong association 

between these pathways and T2D and included pathways for the metabolism of amino acids 

(phenylalanine, cysteine, methionine, alanine, glutamine and aspartate), aromatic compounds 

(toluene, fluorobenzoate, chlorocyclohexane), and fatty acids (α-linoleic acid, riboflavin) (Figure 66 C 

,Table 20). Some of the pathways were significantly different in relative abundance between nonT2D 

and T2D. 
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Figure 66 Random forest model for classification of T2D with metabolic pathways.  

(A) Left panel, list of top 30 optimal marker pathways along with their feature importance score. The feature 
importance scores increased sharply for the top 30 pathways and decreased linearly for all pathways below the 
top 30. Consequently, the top 30 pathways were identified as the optimal set of functional markers here. (B) Left 
panel, comparison of AUC distribution of iterative random forest models obtained by including only the top 30 
pathways and excluding the top 30 pathways. Models incorporating only the top 30 pathways could predict T2D 
individuals from controls with a mean AUC of 0.81. Excluding these pathways resulted in a significant decrease 
(P < 3∙10-9) to mean AUCs around 0.6. In total, 130 KEGG pathways are significantly associated with at least one 
of the selected OTUs. Comparing the random forest selected KEGG pathways with the risk signature associated 
pathways, shows a 100% overlap. The right panel shows the results for log-scaled transformed data for 
compositionality analysis. (C) Left heatmap shows the associated of KEGG pathways and T2D. After stratifying 
the individuals into nonT2D, iT2D and T2D it is shown that some of the pathways are associated with nonT2D 
while other are more prevalent in T2D. Right heatmap shows the results for log-scaled transformed data for 
compositionality analysis.  

B 

C 
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To validate the determined bacterial taxa of the s-arOTUs and to correctly classify the OTUs on strain 

level, a correlation analysis of OTU relative abundance values against shotgun sequences was 

conducted (Table 17). Some previously assigned taxonomies were henceforth adapted (Table 21). 

Twenty-six of the originally chosen 30 pathways associated with T2D were found to correlate (p-value 

≤ 0.1) with at least 2 of the 13 previously identified predictive s-arOTUs. It could be shown that T2D-

associated pathways significantly correlate with the selected arrhythmic OTU list of 13 s-arOTUs, 

strengthens the importance of these s-arOTUs in T2D classification. This finding also connects taxa (i.e., 

OTUs) with functionality (i.e., genes from metagenomes).  

Table 20 Functional Pathways in association with T2D. 

 
P-

value 
Disease 

Corrected 
P-value 

Mean 
in T2D 

Mean in 
nonT2D 

Retinol metabolism 0.003 T2D 0.094 0.0002 0.0001 

Drug metabolism cytochrome P450 0.005 T2D 0.156 0.0002 0.0002 

Metabolism of xenobiotics by cytochrome P450 0.005 T2D 0.156 0.0002 0.0002 

Bacterial invasion of epithelial cells 0.014 T2D 0.373 0.0000 0.0000 

Penicillin and cephalosporin biosynthesis 0.018 T2D 0.466 0.0001 0.0000 

betaLactam resistance 0.020 T2D 0.511 0.0004 0.0003 

Lipoic acid metabolism 0.020 T2D 0.511 0.0012 0.0009 

Fluorobenzoate degradation 0.023 T2D 0.533 0.0001 0.0001 

Lysine biosynthesis 0.025 nonT2D 0.550 0.0141 0.0147 

DAlanine metabolism 0.046 T2D 0.960 0.0018 0.0016 

Alanine aspartate and glutamate metabolism 0.047 nonT2D 0.960 0.0210 0.0219 

Ubiquinone and other terpenoidquinone biosynthesis 0.049 T2D 0.960 0.0032 0.0026 

Phenylalanine metabolism 0.049 nonT2D 1 0.0030 0.0034 

Riboflavin metabolism 0.063 T2D 1 0.0041 0.0038 

AlphaLinolenic acid metabolism 0.063 T2D 1 0.0002 0.0001 

Photosynthesis 0.067 nonT2D 1 0.0101 0.0108 

Valine leucine and isoleucine degradation 0.072 T2D 1 0.0035 0.0032 

Steroid biosynthesis 0.076 T2D 1 0.0001 0.0000 

Cysteine and methionine metabolism 0.082 nonT2D 1 0.0175 0.0180 

Glycosaminoglycan degradation 0.084 T2D 1 0.0014 0.0011 

Nitrotoluene degradation 0.087 T2D 1 0.0009 0.0007 

Nicotinate and nicotinamide metabolism 0.119 T2D 1 0.0083 0.0080 

Novobiocin biosynthesis 0.119 nonT2D 1 0.0030 0.0031 

RNA transport 0.122 T2D 1 0.0014 0.0013 

Toluene degradation 0.163 T2D 1 0.0027 0.0024 

Chlorocyclohexane and chlorobenzene degradation 0.175 T2D 1 0.0001 0.0001 

RNA degradation 0.202 nonT2D 1 0.0068 0.0069 

Peptidoglycan biosynthesis 0.212 T2D 1 0.0122 0.0119 

DNA replication 0.327 T2D 1 0.0087 0.0087 

Taurine and hypotaurine metabolism 0.551 T2D 1 0.0031 0.0030 
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The 30 pathways found to correlate with T2D classification clustered into two groups. The first group 

is associated with F. prausnitzii (G1) and the other shows stronger correlation with E. coli  (G2). Next, 

the 13 s-arOTUs were correlated with clinical markers. It turned out that the G1 OTUs are negatively 

correlated with HbA1c, HOMA and glucose values. In contrast, the G2-related OTUs are positively 

correlated with diabetes markers and increased presence of E.coli (Figure 67).  

 

Strong correlations were observed between E. coli and xenobiotic metabolism pathways, the latter of 

which were also negatively associated with short-chain fatty acid biosynthesis as well as metabolism 

of co-factors and vitamins. The taxon-group of E. coli was negatively associated with the taxon-group 

frome by F. prausnitzii, the latter of which mostly occurred in combination with C. barletti (Figure 67). 

Figure 67 Metabolic pathways and arrhythmic risk signature. 

The heatmap shows the Spearman correlations for 26 disease-predictive microbial pathways within the 13 OTUs 
becoming arrhythmic in T2D (determined from 100 shotgun sequenced samples). Only pathways that were 
significantly correlated with at least one of the 13 arrhythmic OTUs are shown. The heatmap on the bottom left 
shows the association pattern for the 13 OTUs with clinical markers that characterize T2D (determined from the 
entire cohort). For both heatmaps, significant associations were corrected using the Benjamini-Hochberg 
procedure. Corrected p-values ≤ 0.1 are indicated with * in each field. On the right, a one-dimensional heat-plot 
shows relative representations of each of the previous pathways observed in the cohort of Qin et al. (2012), 
either enriched in T2D (dashed) or enriched in nonT2D (blue). Furthermore, pathways predicted to be influenced 
by diurnal cycles in Beli et al. (2019) are indicated in grey if affected. 

 



 VALIDATION OF ARRHYTHMIC RISK SIGNATURE IN THE TWINSUK COHORT 

 

120 

 

In contrast, B. longum was not associated with the presence of other taxa, but negatively correlated 

with xenobiotic biodegradation pathways.  

 

Table 21 Taxonomic classification of s-arOTUs by metagenomic shotgun sequencing data 

s-arOTUs Metagenomic classification Species name Pearson correlation 

OTU_76 OTU_102 Clostridium bartlettii 0.482 

OTU_101 OTU_105 Clostridium bartlettii 0.434 

OTU_11747 OTU_1149 Faecalibacterium prausnitzii 0.730 

OTU_34182 OTU_13 Escherichia coli 0.958 

OTU_12 OTU_13672 Escherichia coli 0.905 

OTU_3247 OTU_27295 Faecalibacterium prausnitzii 0.721 

OTU_37 OTU_37 Bifidobacterium longum 0.952 

OTU_11374 OTU_4027 Faecalibacterium prausnitzii 0.601 

OTU_34127 OTU_5 Faecalibacterium prausnitzii 0.810 

OTU_45 OTU_51 Eubacterium rectale 0.365 

OTU_1860 OTU_60140 Faecalibacterium prausnitzii 0.621 

OTU_1014 OTU_66374 Coprococcus sp ART55 1 0.434 

OTU_63 OTU_75 Clostridium bartlettii 0.772 

OTU_13827 OTU_9108 Faecalibacterium prausnitzii 0.614 
 

 

 

We then determined whether the functional associations identified could be validated in datasets from 

previous studies. First, we compared differentially abundant genes from the study by Qin et al (Qin, Li 

et al. 2012), with the relative representation of the corresponding pathways in the T2D and nonT2D 

individuals of the KORA cohort (identified as either enriched in T2D or nonT2D). Notably, 19 of the 26 

pathways could be validated (Figure 67). Second, we checked if any of these identified pathways were 

previously observed showing arrhythmic behaviors (or diurnal cycles) in a recent study published by 

Beli et al. (2019). Notably, 7 of the 26 pathways identified in the study, including xenobiotic 

metabolism, cysteine and methionine metabolism, α-linoleic metabolism, and taurine and 

hypertaurine metabolism, were also reported to undergo diurnal rhythmicity (Figure 67). These results 

show that the metagenomic analysis is able to link functions of the arrhythmic risk signature (s-arOTU) 

with metabolic features identified in individuals with T2D (Figure 68). 
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Figure 68 Schematic overview of the associations between metabolic pathways, diabetes marker and 
arrhythmic risk signature.  

Correlation network of HbA1c associated pathways in relation to selected T2D markers (s-arOTUs; orange 
circles). Green and blue lines indicate a positive and negative association, respectively. The thickness of lines is 
proportional to correlation coefficients. The color of circles refers to functional classes as indicated. 

Schematic flow integrating T2D signature, rhythmicity and microbiome function in the metagenomes. The flow 
correlates the major disease-associated metabolic pathways identified in the current study, their associations 
with the disease/health-associated taxonomic markers, the metabolic byproducts originating from these 
pathways, and the previously known associations of these byproducts with the various clinical phenotypes. The 
green arrows are positive association, dashed is negative, conflicting associations are shown as blue arrow (BCFA 
has been shown to be positively associated insulin sensitivity in some paper, while others show no association). 
Purple-arrows link pathways to their metabolic by-products. 

 

 

B 
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5. Discussion 

The main focus of this thesis was to determine a bacterial risk signature for the classification and 

prediction of T2D. As an initial step, we systematically evaluated DNA extraction, 16S rRNA gene 

sequencing methods and downstream bioinformatics and statistical analysis tools to comprehensively 

benchmark the protocols used in this work. In order to avoid the appearance of spurious bacterial taxa 

in 16S rRNA gene sequencing data an abundance-based filtering cutoff of 0.25% OTU relative 

abundance was introduced. 

Our results showed that under physiological conditions, the gut microbiota follows a circadian 

rhythm, which is partly disrupted in T2D and obesity. The human gut microbiota is characterized by a 

large inter-individual variation, but it also shows a dynamic behavior within one individual. This inter-

individual variation can  be explained by a number of co-variables, including BMI, age, physical activity, 

vitamin D intake and medication. Our results showed that triglyceride, BMI and geographical region 

account for most of the variation among the population. 

 

5.1. Benchmarking of DNA extraction and sequencing protocols 

The analysis of complex microbial communities by high-throughput 16S rRNA gene amplicon 

sequencing has become very popular. Taking advantage of the rapid development of next generation 

sequencing it is possible to analyze the human gut microbiota of thousands of individuals in a short 

time frame and with relatively low costs. However, there is still a substantial gap between the claim of 

high quality data as well as complex study question which needed to be addressed and the limited 

expertise available in many users’ laboratories (Hamady and Knight 2009, Human Microbiome Project 

2012, Avershina and Rudi 2015, Tsilimigras and Fodor 2016, Gloor et al. 2017). As already shown by 

others before (Hiergeist, Reischl et al. 2016), we also confirmed that the data generated by targeted 

sequencing is strongly affected by sample preparation methods (e.g. DNA isolation, PCR cycles, etc.) 

as well as by applied bioinformatical and statistical methods (Salter, Cox et al. 2014, Schirmer, Ijaz et 

al. 2015, Clavel, Lagkouvardos et al. 2016). In particular, the method for DNA isolation was shown to 

have a strong influence on the sequencing outcome (Claassen, du Toit et al. 2013, Wagner Mackenzie, 

Waite et al. 2015). Testing for different isolation methods showed that, even with a high amount of 

bacterial DNA as starting material, some DNA extraction kits or certain methods provided insufficient 

yield of DNA for 16S rRNA gene sequencing, which could be due to the inability of inactivating inhibitors 

in the stool sample (Claassen, du Toit et al. 2013, Wesolowska-Andersen, Bahl et al. 2014).We also 

determined some discrepancies in taxonomy for certain OTUs between different methods, but also 

within replicates of the same method. This shows that the applied DNA extraction protocols and library 
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preparation steps influence the results. Therefore, it is important to provide as much information as 

possible about the applied method to achieve better reproducibility.  

The results of the cohorts used for validation, where the samples were prepared from 

collaborating partners (FoCus and TwinsUK), using different DNA extraction protocols, showed 

variation in alpha-diversity and taxonomic composition, even though the same bioinformatic pipeline 

was used for the statistical analysis (Lagkouvardos, Joseph et al. 2016, Lagkouvardos, Fischer et al. 

2017). In the FoCus cohort a different the DNA isolation protocol was applied (QIAamp DNA stool mini 

kit, automated on the QIAcube Qiagen). Keeping this in mind a reduction in richness (FoCus of 264 ± 

59, KORA2013 384 ± 77) but an increase in Shannon effective number wcould be determined (FoCus of 

171 ± 70, KORA2013 118 ± 37). The TwinsUK cohort targeted the V4 region of the 16S rRNA gene which 

could have had an influence on the taxonomic classification due to different mapping regions of the 

16S rRNA gene. 

Some of these discrepancies are mainly explained by known microbial influencing factors such 

as geographical region (He, Wu et al. 2018), health (Karlsson, Tremaroli et al. 2013, Khan et al. 2014, 

Pascal, Pozuelo et al. 2017, Thingholm, Ruhlemann et al. 2019) and lifestyle (O'Toole and Jeffery 2015, 

Falony, Joossens et al. 2016, Zhernakova, Kurilshikov et al. 2016), but variations could also be due to 

the differences in sample preparation protocols as well as methodological differences in targeted 

sequencing (Goodrich, Waters et al. 2014, Relling, Akcay et al. 2018). 

To increase the comparability of different studies and to avoid misinterpretations of the data 

due to artefacts (Bokulich, Subramanian et al. 2013, Fuks, Elgart et al. 2018), it is further important to 

filter the sequencing outcome properly (Avershina and Rudi 2015). Filtering 16S rRNA gene sequencing 

data is not a novel concept for the preprocessing of raw sequencing data. Nevertheless, the commonly 

used filtering to remove singletons has disadvantages. This filtering is strongly dependent on the actual 

OTUs and read number (Schloss, Westcott et al. 2009, Caporaso, Kuczynski et al. 2010, Callahan, 

McMurdie et al. 2016). We showed that the number of generated OTUs dependents on the number of 

samples included in a study. The appearance of bacteria, which are not part of the microbial 

community, was still high after singleton removal. An incomplete filtering of spurious OTUs results in 

a higher number bacterial taxa which are not part of the community which could lead to wrong 

conclusions e.g. associations with health (Halfvarson, Brislawn et al. 2017). The proposed relative 

abundance-based filtering cutoff is currently limited to 16S rRNA gene sequencing OTU data from stool 

samples, targeting the V3V4 region, but future experience will broaden the applicability. In addition, 

bacterial members of the gut microbiota are determined using ASVs (Callahan, McMurdie et al. 2016) 

instead of OTUs. The clustering to build ASVs is based on sequences with ≥ 99% similarity and, thus, 

results in a higher number of ASVs compared to OTUs (≥ 97% similarity), which influences for example 

the alpha-diversity (Callahan, McMurdie et al. 2017). Of note, currently neither of the two short-



  DISCUSSION 

 

124 

 

amplicon clustering methods should replace the other. Both methods provide results in a synergetic 

manner and are of high quality, and each method has advantages and disadvantages. The advantage 

of OTU picking is the biologically meaningful clustering of a sequence similarity of 97%, but this has the 

disadvantage that sequences are not identical and therefore no real representative sequence can be 

shown for an OTU. This is different with ASVs, where sequences are first modified by a denoising step 

and then identical sequences are combined. This results in a database of ASV sequences that can be 

compared between studies.  

Next to preprocessing of sequencing data, the statistical analysis should be evaluated critically. 

Data tables of OTUs and ASVs should be normalized before statistical analysis are performed. From 

our experience, we recommend a normalization to a fixed cutoff of 10,000 reads per sample for larger 

studies. A normalization to a given value will allow the integration of samples with fewer number of 

reads (< 10,000), but still enough to be considered in the analysis (> 5,000 reads). Samples with a read 

count around the recommend value of 10,000  will not lose information due to normalization of e.g. 

the minimum read number assigned in the study (Lagkouvardos, Fischer et al. 2017). The aggregation 

of OTUs / ASVs with the same taxonomic classification varies according to the database used (e.g. SILVA 

(Quast, Pruesse et al. 2013), Greengenes (Yokono, Satoh et al. 2018), and RDP (Wang, Garrity et al. 

2007)). Disadvantage of binning OTUs with the same taxonomic classifier (e.g, phylum, genus) is the 

high error rate, especially at lower taxonomic levels, such as genus or strain level (Hamady and Knight 

2009, Clavel, Lagkouvardos et al. 2016) and the missing overlap in nomenclature in different database 

(Edgar 2018). The use of relative abundance instead of absolute counts could also lead to wrong 

interpretations. Data transformation (Tsilimigras and Fodor 2016) or the add-in of spike communities 

(Stämmler et al. 2016) may be one possible solution to deal with this problem.  

For the analysis of microbial differences between groups, a multidimensional scaling plot is 

one of the most commonly used illustration tools. Nevertheless, the applicability of two-dimensional 

scaling methods is limited to data sets of about 300 samples at maximum, due to the linear increase 

in dimensions (which all need to be projected on the two dimension of a paper or screen surface) with 

an increase in sample size. Thus, above about 300 samples, a similarity tree is more appropriate 

representation, which should be used. 

Taken together, a standardized and well documented and evaluated pipeline increases 

transparency, enables reproducibility, and generates the high-quality outcome needed.   
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5.2. The association of changes in the bacterial gut composition with health 

and co-variables 

This work provided novel insights to the composition of the human gut microbiota 

implementing three large population-based cohort studies. Based on more than four thousand 

individuals, it was evident that the composition of the human gut microbiota is largely influenced by 

multiple factors which drive changes in the abundance of the presence of bacteria within the gut  

(including age, BMI, health, and medication). The human gut microbiota showed a high degree of 

variability between the different human cohorts, but also between individuals within one cohort, as 

well as within one individual. The strong inter-individual variation makes it difficult to draw conclusions 

based on the appearance and abundance of certain bacteria, especially without consider additional 

factors. Thus, it is important to identify variables influencing the stability and function of the gut 

bacterial ecosystem. One of these mechanism seemed to be the circadian clock. Previous studies 

showed that the composition is influenced by human genetics (Goodrich, Waters et al. 2014), 

environment (Falony, Joossens et al. 2016, Zhernakova, Kurilshikov et al. 2016, He, Wu et al. 2018), 

and host health (Turnbaugh, Ley et al. 2006, Qin, Li et al. 2012, Le Chatelier, Nielsen et al. 2013, 

Thingholm, Ruhlemann et al. 2019). We confirmed the contribution of above-mentioned co-variables 

to the overall taxonomic composition, nevertheless, a large amount of approximately 90% of the 

variation remained unexplained.  

The major strength of the enable cohort was its large number of co-variables assessed, 

including several bio samples (e.g. blood) as well as information related to dietary habits. Taking all the 

available covariables in consideration the proportion of explained variation increased from 9.1% 

(KORA2013 cohort) to 16.27% (enable cohort). Combined results of the three cohorts identified a set of  

variables, including age, BMI, insulin and glucose values, but also variables related to lifestyle and 

physiology of the body e.g. time of defecation, impact the microbiome’s composition. In a study from 

an Israel cohort, 20% of bacterial diversity could be explained by factors related to diet, drugs and 

anthropometric measurements (Rothschild et al. 2018). This was also confirmed in the study from 

Falony et al. with a combined effect size of 16% highlighting again the association of covariates and 

microbiota composition (Falony, Joossens et al. 2016). It was shown that medication explained the 

largest variance with over 10%.  A study from the United States showed that sociodemographic 

variables e.g. national origin and geographic region explained around 4% (Kaplan et al. 2020). The 

strong effect of geography was also seen in a Chinese cohort, where the host location was the 

strongest explanatory factor (approx. 9%) (He, Wu et al. 2018). Overall, there are some effect modifiers 

(e.g. BMI, alcohol intake, age, gender, blood glucose), which are overlapping in all population-based 

cohort studies.  Overall, the results of our study as well as from previously described large population-



  DISCUSSION 

 

126 

 

based cohort studies provided profound knowledge about influencing factors (Qin, Li et al. 2010, 

Goodrich, Waters et al. 2014) and diet associated pattern (Clarke, Murphy et al. 2012, David, Maurice 

et al. 2014, Kaczmarek, Musaad et al. 2017). 

In addition to the taxonomic description, we addressed the dynamic and stability of the gut 

microbiota by including longitudinal data. For the individual S1, 58 samples were collected and 

analyzed to investigate changes over time. The bacterial composition of the gut seemed to react 

towards many environmental changes, showing continuous fluctuation over time. Nevertheless, it was 

not possible to determine what causes these fluctuations. For instance, the intake of probiotics did not 

result in significant changes compared to other samples, collected before and after this intervention. 

Differences on genus level could possibly be linked to stress and changes in dietary habits. Generally, 

the dynamics of the gut microbiota seemed to be specific for individuals and varied significantly 

between different individuals. For instance, the longitudinal analysis for two individuals showed that 

there was a high variability in bacterial compositional in subject S1, while the analysis of subject S2 

showed less pronounced variability. This was also confirmed using a time series analysis of 93 subjects 

from the enable cohort, where four consecutive fecal samples were collected. Some of them showed 

large variation, while others were relatively stable in their microbial composition. Other studies had 

detected a comparable variation within an individual over time (Flores, Caporaso et al. 2014, 

Halfvarson, Brislawn et al. 2017, Zhou, Sailani et al. 2019). It was suggested that the intra-individual 

variation could dependent on health status e.g. a less stable microbial composition in individuals 

diagnosed with IBD (Halfvarson, Brislawn et al. 2017).  

But even after numerous studies trying to describe the function, variability, and influencing 

factor of the gut microbiome and its influence towards host health, research into the gut microbiome 

is still in its infancy. A strong global variation in bacterial composition, a lack in commonly shared 

species including methodological settings as well as possible association with co-factors, increases the 

complexity gut microbiome analysis. 
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5.3. Functional pathways associated with circadian rhythmicity and metabolic 

health 

Oscillations of the gut microbiome were shown to be absent in mice with a genetically 

dysfunctional circadian clock (Thaiss, Zeevi et al. 2014, Liang, Bushman et al. 2015), indicating that a 

functional circadian clock of the host is required to maintain rhythmicity of microbiota composition.  

The rhythm observed in the two main phyla could be associated with food intake. The peaking 

hours of Bacteroidetes are in the early morning and late evening/night. Bacteroidetes is known to be 

associated with gene responsible to break down carbohydrates from dietary sources (Turnbaugh, Ley 

et al. 2006). The absorption process of carbohydrates takes around 3 - 6 hours which could be a 

possibly explanation for the reduced relative abundance of Bacteroidetes during the day. Intracellular 

transport of e.g., sugars is associated with the phyla Firmicutes and thus, could be a possible 

explanation for decreased abundance during the afternoon/evening whereas the absorption of 

carbohydrates is complete (Louis et al. 2007). 

It was also shown that circadian signals from the microbiota affect diurnal rhythmicity of 

histone acetylation in intestinal epithelial cells controlling metabolic responses in the host (Kuang et 

al. 2019). These previous findings supported our hypothesis that circadian rhythms in microbiota-host 

interactions contribute to metabolic homeostasis of the host. Accordingly, loss of rhythmicity of 

bacterial taxa in T2D subjects, identified in this study, likely resulted in arrhythmicity of their metabolic 

products. Incorporating, shotgun metagenomic analysis identified 26 microbial pathways associated 

with ‘xenobiotic’, ‘branched-chain amino acids’, ‘fatty acids’, as well as ‘taurine metabolism’, forming 

a functional link between the diurnal oscillation of bacteria in the gut and metabolites. Branched-chain 

amino acids were previously documented to follow circadian rhythmicity in blood samples from 

humans kept under 40 hours constant routine, but rhythmicity is lost in subjects with T2D (Skene et al. 

2018). However, 19 of 26 pathways (73%) identified in the metagenomic analysis were validated in an 

independent cohort of T2D individuals (Qin, Li et al. 2010), suggesting that the functionality of 

arrhythmic microbiota and thus sampling time points are relevant biomarkers. Notably, among 

pathways, several were linked to the metabolism of certain amino acids and degradation of aromatic 

compounds. Positive associations with health-associated taxonomic markers microbes and the amino-

acid metabolism of alanine, aspartate, glutamate, and cysteine have been found before. The major 

(by-)products of the microbial fermentation of alanine, aspartate, glutamate and cysteine are short-

chain fatty acid (SCFAs) and hydrogen sulfide (H2S), respectively (Oliphant and Allen-Vercoe 2019). 

While SCFAs are known for their health benefits including amelioration of insulin resistance, H2S has 

been suggested as a positive regulator of insulin sensitivity especially (Khan, Nieuwdorp et al. 2014). 

In contrast, a negative association with metabolic health was observed for ‘phenylalanine metabolism’, 
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which had been attributed to phenylethylamine and carbon dioxide in the past (Khan, Nieuwdorp et 

al. 2014, Oliphant and Allen-Vercoe 2019). Similar, p-cresol, derived from the degradation of aromatic 

compounds as toluene-related substances, was suggested to be a negative regulator of insulin 

sensitivity (Koppe et al. 2013). Interestingly, there were 9 OTUs that gained rhythmicity in T2D when 

patients were treated with metformin. Seven of those OTUs were assigned to the genus Collinsella. 

Thus, suggesting that species that recovered rhythmicity with metformin treatment are associated 

with metabolic pathways and genes. 

 Taken together, the signature of arrhythmic bacteria did not only contribute to the 

classification and prediction of T2D, but also suggests a functional link between circadian rhythmicity 

and the microbiome in metabolic diseases. 

 

5.4. Evaluation of the predictability and transferability of the arrhythmic 

bacterial risk signature  

In the present work, we were able to determine a bacterial signature, which not only acts as a 

classifier but also works as a predictor for T2D. Using the prospective data of KORA (sampling in 2013 

and 2018), we evaluated the predictability of T2D with the previously defined risk signature. Indeed, 

T2D was correctly predicted with an accuracy of 78%. However, the application of this bacterial risk 

signature to another cohort (TwinsUK) was only partly successful. The power to predict T2D was lost 

for the TwinsUK cohort. Regional differences in individual microbiota profiles and sampling time 

possibly affect the identification of arrhythmic bacteria in T2D and the applicability  of risk signatures. 

These data emphasizes the need to acquire the time points of stool sampling (i.e. time of defecation). 

The classification of disease had a large effect on the outcome. For instance, the applicability 

of T2D risk signatures was aggravated by the different diabetes classifiers used in different studies. In 

the prospective part of the KORA2018 cohort, which included re-sampling in year 2018, T2D was only 

classified based on HbA1c (Holle, Happich et al. 2005), while TwinsUK used fasting blood glucose 

(Goodrich, Waters et al. 2014), and FoCus the HOMA index (Relling, Akcay et al. 2018). Even though all 

these measurements are based on values measured in blood and represent accepted biomarkers 

(Stern, Williams et al. 2005), some of the border lining T2D cases might be misclassified. Despite the 

extensive efforts to define the role of the gut microbiome in metabolic diseases, especially obesity and 

T2D, limited reproducibility and specificity of disease-associated taxa, e.g. members of 

Christensenellaceae, Collinsella and Escherichia coli are also associated with Crohn’s disease (Pascal, 

Pozuelo et al. 2017), across cohorts complicates the identification of microbial risk factors. Differences 

in the reported arrhythmic taxa between our study and the report from Thaiss et al. (2016) may again 

be explained by variations in microbiota composition of the different subjects at the individual level 
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(Falony, Joossens et al. 2016, Zhernakova, Kurilshikov et al. 2016) and regional level (Shin et al. 2016, 

He, Wu et al. 2018), but also methodological differences in the study design (e.g. DNA isolation, library 

preparation, primer selection) (Klindworth, Pruesse et al. 2013, Dominianni, Wu et al. 2014, Salter, Cox 

et al. 2014, Schirmer, Ijaz et al. 2015, Costea et al. 2017, Johnson et al. 2019). The lack of 

documentation of stool sampling time in prior studies in addition to the well-documented regional and 

individual differences in microbiota profiles may account for discrepancies between studies. We 

therefore suggest considering circadian oscillations to better understand the underlying mechanisms 

of disease-associated microbiome alterations and to validate risk profiles in prospective cohorts.  

Differences could be also attributed to the different methods used in the 16S rRNA gene 

sequencing by differences in the targeted gene region for amplicon sequencing. Validation of the 

adaptability to independent cohort studies as well as to results obtained by published data was 

complicated by this variation in sequencing. KORA, FoCus, and enable used V3V4, TwinsUK relied on 

V4 only, and Thaiss et al. had chosen V1V2. Comparing the sequencing data generated by targeting the 

V1V2 region of the 16S rRNA gene with the data from targeting the V3V4 region of the 16S rRNA gene 

showed differences in alpha-diversity without correlation in richness or Shannon effective number of 

species within one individual. We further found no rhythms while targeting the V1V2 V-region in alpha-

diversity and substantially less rhythmic OTUs, compared to the data obtained from the same 

individuals but sequenced on the V3V4 region from the same samples. Comparison of two regions 

targeted (V1V2 and V3V4) showed discrepancies in the results, even though DNA was extracted using 

the same protocol. 

 

5.5. Longitudinal sample and integrative studies increase knowledge about the 

bacterial composition of the human gut 

To characterize key differences between and within cohorts, we analyzed three large 

population-based studies (e.g., KORA2013, KORA2018, enable, and FoCus cohort). Using cross-sectional 

cohorts, we provided evidence that the sampling time point influences the composition of the gut 

microbiota and showed that metabolic health could be linked to a disrupted circadian rhythmicity in 

certain bacteria. We further identified functional pathways associated with the arrhythmic microbial 

species and were able to verify the results from previous studies (Thaiss, Zeevi et al. 2014, Thaiss, Levy 

et al. 2016, Skene, Skornyakov et al. 2018, Beli, Prabakaran et al. 2019). Nevertheless, cross-sectional 

data have its limitations especially in the analysis of rhythmicity. To verify the concept of circadian 

rhythmicity and its association with health, strong consideration should be given to longitudinal study 

designs include as many sampling time points as possible and/or necessary to provide sufficient 
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statistical power. Stool sampling from human subjects has its limitations since subjects are rarely able 

to provide multiple samples throughout the day and night. 

Furthermore, metagenomic shotgun analysis provides better insight into the functional 

capacities of different bacterial groups. Using shotgun metagenomic and strain-level diversity analysis 

allows the characterization causal relationships between microbial and metabolic dysbiosis and its 

association with the disease. Further,  rare or novel organisms in the community could be identified. 

The taxonomic classification obtained through shotgun sequencing is more reliable and specific, 

allowing an increased comparability of results across studies (Heintz-Buschart and Wilmes 2018, Zhang 

et al. 2019).  
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6. Concluding remarks 

We identified daytime-related oscillations in bacterial abundance of specific intestinal community 

members and most importantly, diurnal rhythmicity was disrupted in patients with T2D. Nevertheless, 

16S rRNA amplicon sequencing is limited in terms of taxonomic resolution and is not able to inform 

about specific genes and pathways involved in these oscillations.  

Therefore, shotgun metagenomic sequencing from large-scale population-based cohorts needs to 

be performed to generate strain-specific and functional characterization to identify clock-related 

target genes as well as inter-species diversity of selected rhythmic bacterial species. This aims to 

identify daytime-dependent bacterial functions and diversity to understand causality of circadian 

disruption in individuals with T2D. Comparative and integrative analyses of stool samples will provide 

a powerful tool to assess the phylogenetic, strain and functional diversity of the human gut 

microbiome. Metabolite profiles from stool will help to further stratify functionally relevant mediators 

of daytime-specific microbiome-host interactions. However, the diversity and fluctuation of individual 

microbiomes still hinders the identification of universal risk signatures.  In addition to the population-

based analysis it is important to follow the individual trajectory of rhythmic bacterial species over time. 

In this respect longitudinal sampling of healthy and diseased individuals is indispensable. 

Our findings clearly highlight the need to consider diurnal changes in the analysis of the gut 

microbiota composition. Including sampling time as parameter in the analysis of upcoming studies will 

contribute to the better understanding of the impact of gut associated circadian rhythmicity with 

health.  

To increase applicability of identified risk signatures a regionally restricted core microbiome could 

be achieved e.g., for Southern Germany. A core microbiome could serve as reference microbiome 

estimating the microbial health of newly integrated individuals of this area. It would further help to 

define cluster, associated with certain co-variables and/or functional pathways, and to categorize 

samples under investigation. We attempt to expand the integrative dataset, by adding more samples 

with adequate preprocessing and addressing the same target region of the 16S rRNA genes. In 

addition, dietary recommendations (e.g., amount of fiber) and defined microbial related preventive 

treatments (e.g., probiotics) should be defined. Suggesting that individuals may differ in their response 

to certain food the association of bacteria, food and time should be considered as possibility to prevent 

metabolic diseases like T2D. Towards this end, food-related intervention studies, which are 

personalized according to each individual’s’ gut microbial composition would be very important.
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7.  Supplementary  

7.1. Supplementary tables 

Supplementary table 1 Overview of different DNA isolation methods. 

 Nanodrop (mean 
ng/µl ± SD) 

Qubit (mean 
ng/µl ± SD) 

Position on agarose 
gel (Figure 4) 

DNA protocol/kit 

ISO-1 252.2 ± 105.9 85.8 ± 21.9 1 – 3 PSP Spin Stool DNA Plus Kit 

 

ISO-2 595.0 ± 233.7 not available 4 – 6 OneStep™ PCR Inhibitor Removal Kit 

 

ISO-3 45.9 ± 10.9 not available 7 – 9 DNA Clean & Concentrator™ 

-5 (DNA C&C) 

 

ISO-4 153.6 ± 41.5 85.9 ± 3.9 10 – 12 GODON excl. isopropanol step 
(Godon 1997) 

 

ISO-5 216.7 ± 40.3 104.2 ± 2.7 13 – 15 GODON incl.  isopropanol step 
(Godon 1997) 

ISO-6 61.8 ± 7.8 1.5 ± 0.4 16 – 18 NucleoSpin® gDNA Clean-up 

 

ISO-7 52.8 ± 36.8 not available 19 – 21 gDNA Clean & Concentrator™ -10 
(gDNA C&C) 

 

ISO-8 10.9 ± 1.9 9.6 ± 2.7 22 – 24 QIAamp DNA Stool Mini Kit + 
QIAcube (200µl) 

 

ISO-9 not available 18.2 ± 1.0 25 – 28 QIAamp DNA Stool Mini Kit (400µl) 

 

IOS-
10 

not available 10.7 ± 2.3 29 – 32 QIAamp DNA Stool Mini Kit + 
QIAcube (200µl) 
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Supplementary table 2 Co-variables acting as confounder in T2D.  

Permutational multivariate analysis of variances to determine confounding factors. Control group are individuals 
with BMI < 30 and without T2D or prediabetes. 

Covariable P-value 

Gender 0.001 

Age 0.001 

Vitamin D intake 0.002 

Physical activity 0.004 

PPI 0.023 

Metformin intake 0.001 
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Supplementary Table 3 Overview of generated machine learning models for classification and prediction. 

Model Binary Outcome Included Features 
Classification 

Model 
Related Figure AUC 

s-arOTUs nonT2D / T2D 13 arrhythmic OTUs GLM Figure 51 0.73 

s-arOTUs+BMI nonT2D / T2D 13 arrhythmic OTUs + BMI GLM Figure 51 0.79 

rfOTUs nonT2D / T2D random forest selected OTUs RF Figure 52 0.73 

rfOTUs + BMI nonT2D / T2D random forest selected OTUs + BMI RF Figure 52 0.77 

rndOTUs nonT2D / T2D 13 randomly selected OTUs GLM Figure 53 A 0.59 

rndOTUs + BMI nonT2D / T2D 13 randomly selected OTUs + BMI GLM Figure 53 A 0.73 

model obesity BMI < 30 / BMI > 30 random forest selected OTUs RF Figure 53 B 0.63 

rfOTUs nonT2D / T2D model obesity random forest selected OTUs RF Figure 53 B 0.7 

mixedRF nonT2D / T2D mixed effect random forest selected OTUs MERF Figure 54 0.69 

centered log model nonT2D / T2D 
random forest selected cantered log ratio 

transformed OTUs 
RF Figure 57 0.71 

centered log model + BMI nonT2D / T2D 
random forest selected cantered log ratio 

transformed OTUs + BMI 
RF Figure 57 0.75 

log-Ratio model nonT2D / T2D random forest selected log ratio OTUs RF Figure 57 0.74 

log-Ratio model + BMI nonT2D / T2D random forest selected log ratio OTUs + BMI RF Figure 57 0.75 

rfOTUs nonT2D / T2D 14 random forest selected OTUs GLM Figure 58 0.75 

rfOTUs + BMI nonT2D / T2D 14 random forest selected OTUs + BMI GLM Figure 58 0.79 

model with miscellaneous risk 
marker 

nonT2D / T2D 
models with random forest selected features 

(OTUs + miscellaneous risk marker) 
RF 

Figure 59 + 
Figure 60 

 

rfMET - 
nonT2D / T2D 

without metformin 
treatment 

random forest selected OTUs RF Figure 62 A 0.6 

rfMET + 
nonT2D / T2D with 

metformin 
treatment 

random forest selected OTUs RF Figure 62 A 0.87 

rfMET - / - 
T2D without 
metformin 

random forest selected OTUs RF Figure 62 A 0.82 
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treatment / T2D 
with metformin 

treatment 

rfMET - / - 

T2D without 
metformin 

treatment / T2D 
with metformin 

treatment 

13 arrhythmic OTUs + BMI GLM Figure 62 B 0.6 

s-arOTUs+BMI nonT2D / T2D 
13 arrhythmic OTUs BLAST matched in FoCus 

cohort + BMI 
GLM Figure 64 B 0.76 

s-arOTUs 
nonT2D / 

Prediabetes 
13 arrhythmic OTUs GLM Figure 65 B 0.69 

s-arOTUs+BMI 
nonT2D / 

Prediabetes 
13 arrhythmic OTUs + BMI GLM Figure 65 B 0.78 

s-arOTUs+BMI nonT2D / T2D 
13 arrhythmic OTUs BLASt matched in 

TwinsUK cohort + BMI 
GLM Figure 66 C 0.68 

s-arOTUs+BMI 
nonT2D / 

Prediabetes 
13 arrhythmic OTUs BLASt matched in 

TwinsUK cohort + BMI 
GLM Figure 66 C 0.69 

rfPathways nonT2D / T2D random forest selected KEGG pathways RF Figure 67 0.81 

rndPathways nonT2D / T2D 
random forest without rfPathways feature 

list 
RF Figure 67 0.6 
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Supplementary table 4 MetayCyc pathways significantly different between persisting T2D cases and nonT2D. 

MetaCyc Pathways P-value Disease 
mean rel. 

abundance (%) 
pT2D 

mean rel. 
abundance (%) 

nonT2D 

Coenzyme A biosynthesis I 0.027 pT2D 0.004 0.003 

Purine ribonucleosides degradation 0.034 pT2D 0.010 0.009 

Superpathway of pyrimidine 
ribonucleosides salvage 

0.040 pT2D 0.003 0.002 

Superpathway of pyrimidine 
deoxyribonucleotides de novo 

biosynthesis 

0.040 pT2D 0.003 0.003 

Pyruvate fermentation to acetate and 
lactate II 

0.042 pT2D 0.004 0.004 

Pantothenate and coenzyme A 
biosynthesis I 

0.045 pT2D 0.006 0.005 

Starch degradation V 0.071 pT2D 0.019 0.018 

Superpathway of pyrimidine 
ribonucleotides de novo biosynthesis 

0.074 pT2D 0.006 0.005 

Galactose degradation I (Leloir pathway) 0.078 pT2D 0.008 0.007 

D-galactose degradation V (Leloir 
pathway) 

0.086 pT2D 0.008 0.007 

Glycolysis IV (plant cytosol) 0.099 pT2D 0.013 0.011 

Superpathway of L-lysine, L-threonine and 
L-methionine biosynthesis I 

0.027 nonT2D 0.002 0.002 

Superpathway of UDP-glucose-derived O-
antigen building blocks biosynthesis 

0.039 nonT2D 0.000 0.000 

Superpathway of fatty acids biosynthesis 
(E. coli) 

0.065 nonT2D 0.000 0.000 

Aspartate superpathway 0.074 nonT2D 0.002 0.002 

Sulfoglycolysis 0.084 nonT2D 0.000 0.000 

 

Supplementary table 5 MetayCyc pathways significantly different between incident T2D cases and nonT2D. 

MetaCyc Pathways P-value Disease 
mean rel. 

abundance (%) 
pT2D 

mean rel. 
abundance (%) 

nonT2D 

4-hydroxyphenylacetate degradation 0.032 nonT2D 4E-07 9E-05 

Superpathway of menaquinol-8 
biosynthesis II 

0.037 nonT2D 3E-05 6E-05 

Peptidoglycan maturation (meso-
diaminopimelate containing) 

0.038 nonT2D 3E-03 4E-03 

Superpathway of N-acetylglucosamine, N-
acetylmannosamine and N-

acetylneuraminate degradation 

0.046 nonT2D 3E-03 3E-03 

Guanosine nucleotides degradation II 0.043 iT2D 5E-04 3E-04 

Superpathway of guanosine nucleotides 
degradation (plants) 

0.052 iT2D 3E-04 2E-04 

L-lysine biosynthesis II 0.063 iT2D 2E-03 2E-03 
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7.2. Supplementary figures 

 

Supplementary figure 1 Changes in alpha-diversity within an Individual of the enable subcohort.  

Heatmap shows richness within one individual for the four consecutive sampling time phases. Rows are ordered 
according to the dendrogram, which clusters individuals with similar richness values.  

 

 

Supplementary figure 2 Association of calorie intake and physical activity.  

Boxplots show the calorie intake [kcal/day] stratified according to average number of meals per day, indicated 
by the participants. Stacked barplot shows the distribution of individuals self-reported status of physical activity.  
Number of individuals per group is shown below the number of meals.  

 

 

 

 

 

 

 

 

 

 



  SUPPLEMENTARY 

 

138 

 

 

7.3. Supplementary file 

Supplementary file 1 Instructions for PCR purification with AMPure XP Beads. 

PCR purification is performed with AGENCOURT AMPure XP Beads (Beckman Coulter) 
1. Remove the AMPure XP beads from -4 °C storage and leave to stand for at least 30 min to bring to 

room temperature. 

2. Vortex the AMPure XP beads until they are well dispersed. 

3. Transfer the content of each PCR tube into the wells of a 96 deep-well plate. 

4. Add 1.8 µl AMPure XP beads per 1.0 µl of PCR product. Gently pipette the entire volume up and 

down 10 times to mix thoroughly.  

5. Incubate at room temperature for 5 min. 

6. Transfer the volume in the 96well-plate. Put the well-plate in the magnetic rack and leave to 

stand at room temperature for 2 min or until the liquid becomes clear in appearance. 

7. Remove and discard supernatants. 

8. Add 200 µl freshly prepared 70 % EtOH to each well without disturbing the beads. 

9. Leave at room temperature for 30 sec and discard all supernatants. Take extra care not to disturb 

the beads. 

10. Repeat steps 8 and 9 once more, for a total of two 70% EtOH washes. 

11. Let the 96-well-plate stand at room temperature for 4-5 min to dry, then remove from the 

magnetic rack. 

12. Re-suspend the dried bead pellet in each well with 31µl BE Elution (recommended volume of 

AMPure standard protocol). Gently pipette the entire volume up and down 10 times to mix 

thoroughly.  

13. Incubate the 96-well-plate at room temperature for 2 min.  

14. Place the 96-well-plate on the magnetic rack at room temperature for 2 min or until the liquid 

becomes clear in appearance. 

15. Transfer 23-31 µl of the clear supernatant from each well to a PCR-tube for DNA measurement by 

fluorimetry (Qubit measurement according to the manufacturer’s instructions). 
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11. Abbreviations 

AGE1 enable individuals between 3-5 years  

AGE2 enable individuals between 18-25 years  

AGE3 enable individuals between 40-46 years  

AGE4 enable individuals between 75-85 years  

arOTUs  Arrhythmic OTUs 

ASV Amplicon Sequence Variants 

AUC  Area Under the Curve  

AUCPR  Area Under the Precision-Recall Curve 

BMI Body Mass Index 

bp Base-pairs  

C1 Ruminococcus cluster 

C2 Bacteroides cluster 

C3 Prevotella cluster 

CD combinatorial dual  

CV coefficient of observation 

CVD  Cardiovascular Disease 

ESV  Exact Sequence Variant  

F/B Firmicutes to Bacteroides ratio  

FDR False Discovery Rate 

FFQ Food Frequency Questionnaire  

FoCus Food Chain Plus  

fold-CV Cross Validation 

GLM Generalized Linear Model 

Gnoto Gnotobiotic mice 

HMP Human Microbiome Project  

HW Hip-Waist Ratio 

IBD  Inflammatory Bowle Disease  

IMNGS  Integrated Microbial Next Generation Sequencing 

IQR  Inter Quartile Range 

ISO-4 GODON modified excl. isopropanol step  

ISO-5 GODON modified incl.  isopropanol step  

ISO-8 QIAamp DNA Stool Mini Kit + QIAcube (200µl) 

iT2D incident Type 2 Diabetes 

JMF Joint Microbiome Facility  

KORA Cooperative Health Research in the Augsburg Region 

MDS Multidimensional Scaling  

MERF Mixed Effect Random Forest Model 

MetaHIT Human Intestinal tract project  

Mock Synthetically spiked Mock community 

nMDS Non-linear Multidimensional Scaling  

OOB Out-of-Box error 

OTU Operational Taxonomic Unit 

PCoA  Principle Coordinate Analysis 

PCR Polymerase Chain Reaction 

PPI Proton Pump Inhibitor  

pT2D Persisting Type 2 Diabetes 
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RDP  Ribosomal Database Project  

rfMET  Selected random forest OTUs for Metformin intake 

rfOTUs Selected random forest bacterial risk signature 

rfT2D+ Selected random forest OTUs for T2D + Metformin intake 

rfT2D+ Selected random forest OTUs for T2D - Metformin intake 

rndOTUs Random OTUs 

ROC Receiver Operating Characteristic 

rOTU Rhythmic OTUs 

S1 Healthy male subject  

S2 Healthy female subject  

s-arOTUs Selected arrhythmic bacterial risk signature 

Study-1 16S rRNA gene sequencing data from Flores et al (2014) 

Study-2 16S rRNA gene sequencing data from Halfvarson et al. (2017) 

T2D Type 2 Diabetes 

T2D+MET  T2D taking metformin 

T2D-MET  T2D without metformin treatment 

Taxa Taxonomically classified bacteria 

TUM-mock  In-house synthetically spiked community of 13 bacteria 

UD Unique dual  

V1V2 Variable region 1 and 2 of the 16S rRNA gene 

V3V4 Variable region 3 and 4 of the 16S rRNA gene 

V4 Variable region 4 of the 16S rRNA gene 

ZymoBIOMICs commercial synthetically spiked community of 8 bacteria 
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