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ABSTRACT 
 

Inflammatory bowel diseases (IBD) comprising Crohn‟s disease (CD) and ulcerative colitis 

(UC) are chronic relapsing inflammatory disorders of the gastrointestinal tract. Accumulating 

evidence suggests that a combination of environmental factors such as smoking or diet may 

contribute to a dysbalanced immune-response against the commensal microbiota in a 

genetically susceptible host. The worldwide incidence of IBD is rising and a general 

adaptation to Western lifestyle including a Western diet has been implicated in this 

observation, especially in developmental countries. Enteral nutritional therapy has been 

proven successful for treatment in a subset of IBD patients. However, the underlying 

mechanisms are not completely understood. Thus, we aimed at elucidating the effects of a 

semi-elemental diet in genetically susceptible animal models of mucosal inflammation. The 

TNFΔARE/WT mouse resembles a model for CD, which develops chronic ileitis under 

conventional conditions on a standard Chow diet. By contrast, we could show that 

pathogenesis of Crohn‟s disease-like ileitis could be inhibited by early dietary intervention 

using a semi-elemental experimental diet (Exp). The protective state was associated with 

decreased expression of proinflammatory cytokines, pattern recognition receptors and 

homing related addressins in distal ileal tissues. Although, dietary intervention was not 

associated with a phenotypic change of CD8+ effector IEL/LPL subpopulations, we did 

observe an overall decrease in infiltrating leukocytes. However, administration of 

experimental diet was not effective for induction of remission in an already established 

inflammatory setting. Moreover, supplementation of experimental diet with low 

concentrations (10%) of Chow was sufficient to induce maximal chronic intestinal 

inflammation. FT-IR analysis of cecal contents from Chow and Exp treatment groups showed 

diet-related differences in spectral distance. However, no alteration in antigenicity could be 

observed in a coculture model of cecal lysate pulsed BM-DCs and CD4+ T-cells. 

Furthermore, gluten was identified as dietary antigen that plays a role in Crohn‟s disease-like 

ileitis. Peptic tryptic digests of gluten induced TNF secretion in total MLNs and gluten-fortified 

experimental diet could induce chronic ileitis in TNFΔARE/WT mice. The protective effect of 

experimental diet inhibiting mucosal inflammation could be confirmed in the IL-10-/- mouse, 

whereas results in a T-cell transfer model of colitis seemed to be equivocal. In conclusion, 

we could show that Crohn‟s disease-like ileitis can be inhibited by dietary intervention using a 

semi-elemental experimental diet. Unraveling the underlying mechanisms might reveal new 

concepts for the improvement of nutritional therapy in IBD patients. Moreover, gluten 

fortification of experimental diet could reverse the protective effect. Thus, the TNFΔARE/WT 

mouse might serve as a new model for spontaneous gluten intolerance.  

  



1. INTRODUCTION 

 

6 
 

1. INTRODUCTION 

 

1.1. Inflammatory bowel disease (IBD) 
 

Inflammatory bowel diseases (IBD) are chronic relapsing inflammatory disorders of the 

gastrointestinal tract with a multifactorial etiology. Crohn's disease (CD) and ulcerative colitis 

(UC) represent the two major forms of IBD, which typically show disease onset in the second 

and third decades of life in genetically predisposed individuals [1]. Histologically, ulcerative 

colitis is characterized by superficial inflammation that is limited to the mucosa and 

submucosa of the colon. Inflammation usually starts in the rectum, spreads proximally in a 

continuous fashion and may be associated with cryptitis and crypt abscesses. By contrast, 

Crohn‟s disease most typically involves the terminal ileum but may affect any part of the 

gastrointestinal tract in a non-continuous fashion. The microscopic features of Crohn's 

disease include transmural inflammation, a thickened submucosa and commonly associated 

complications such as strictures, abscesses, fistulas and non-caseating granulomas. [2, 3]. 

The incidence of IBD is increasing worldwide, and their prevalence is higher than 200 cases 

per 100,000 inhabitants in Western countries [4]. Several factors that contribute to disease 

pathogenesis have been identified, including genetic factors, a dysregulated immune system 

and environmental factors such as diet and the gut microbiota [2, 5] (Figure I-1). Balancing 

the need to respond to pathogens while co-existing with commensal bacteria and luminal 

antigens is a key challenge of the intestinal immune system [3]. There is accumulating 

evidence that IBD is associated with an imbalance in the composition of the intestinal 

microbiota, termed dysbiosis. The concept of substantial microbial impact on disease 

pathogenesis is supported by various mouse models of IBD in which inflammation is 

ameliorated by their development in a germ-free environment [6]. Yet, it is not clear whether 

dysbiosis represents a primary or secondary predisposing factor for IBD, as it may be related 

to, or intensified by other defects [5, 7]. However, there is strong evidence to support that 

IBD results from an inappropriate innate and adaptive immune response to commensal 

microorganisms in genetically susceptible individuals, but the precise etiology remains 

unclear [8]. 
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Figure I-1. Interaction of genetic and environmental factors in the pathogenesis of IBD. 

The interaction of environmental factors such as diet and the gut microbiota in / with a genetically susceptible host 

may lead to impaired regulation of intestinal homeostasis associated with chronic mucosal inflammation.  

 

To identify genes that contribute to disease susceptibility, genome-wide association studies 

(GWAS) have been conducted, successfully revealing 99 non-overlapping genetic risk loci 

(71 in Crohn‟s disease and 47 in ulcerative colitis), including 28 that are shared between both 

types of IBD [9, 10]. In 2001, two groups identified NOD2 (also designated CARD15 and 

IBD1), which is an intracellular sensor of bacterial peptidoglycan, as a susceptibility gene in 

Crohn's disease [11, 12]. Since then, several additional susceptibility loci have been 

implicated in IBD and confirmed by replication. Analyses of the genes and genetic loci 

revealed by GWAS show several pathways that are crucial for intestinal homeostasis, 

including barrier function, epithelial restitution, microbial defence, innate immune regulation, 

reactive oxygen species (ROS) generation, autophagy, regulation of adaptive immunity, 

endoplasmic reticulum (ER) stress and metabolic pathways associated with cellular 

homeostasis [1]. Evidence suggests that there are distinct pathogenic mechanisms related to 

microbial processing in Crohn's disease and ulcerative colitis, as several genetic risk factors 

such as NOD2 and autophagy related ATG16L1 and IRGM are specific to patients with 

Crohn's disease and are not observed in those with ulcerative colitis. By contrast, multiple 

genes implicated in the IL-23 pathway, including IL23R, IL12B and STAT3 have been 

associated with both forms of IBD [13, 14].  

Interestingly, more than 50% of IBD susceptibility loci have been found to be associated with 

other inflammatory and autoimmune diseases as well. Moreover, overlapping genetic risk loci 

may have contrasting effects in different diseases. For example, protein tyrosine 

phosphatase, non-receptor type 22 (PTPN22, R620W) is associated with altered 
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responsiveness of T and B cell receptors and is protective against Crohn's disease, while 

being a strong risk factor for type 1 diabetes and rheumatoid arthritis [15, 16]. These data 

illustrate the complex interplay between genetic variations and disease phenotypes.  

Furthermore, the relatively low concordance rate in monozygotic twins of 10–15% in 

ulcerative colitis and 30–35% in Crohn's disease suggests that non-genetic environmental 

factors may have a strong impact on IBD pathogenesis [9, 10]. For example, smoking seems 

to exacerbate Crohn's disease while being protective against ulcerative colitis, thus being a 

disease-specific modifier of pathogenesis. Recent evidence suggests that smoking impairs 

autophagy, a process that seems to play a role especially in Crohn's disease, demonstrating 

how an environmental factor may mechanistically affect IBD development in a genetically 

predisposed individual [17]. Apart from smoking, environmental factors such as nonsteroidal 

anti-inflammatory drugs (NSAIDs), infections and diet have been implicated in the 

pathogenesis of IBD [18]. 

 Interestingly, over the last several decades, the incidence of IBD has severely increased 

especially in developing countries with historically low rates for these diseases. Increasing 

prevalence of IBD has been associated with a spread of “Western lifestyle” and increased 

status of hygiene in general, which might refer to the Hygiene Hypothesis, postulating that a 

missing exposure to microbial and/or infectious agents during childhood may negatively 

affect immune development and predispose to immunological and autoimmune diseases like 

IBD later in life [19-21]. Yet, the vast majority of studies in this area are impaired by 

methodological limitations, particularly the reliance on retrospective recall of information 

making it difficult to determine the importance of the Hygiene Hypothesis in IBD. However, 

apart from hygiene, an adaptation to “Western diet”, high in fat and protein but low in fruits 

and vegetables has also been associated with the increasing incidence of IBD in developing 

countries [22]. There are several biologically relevant mechanisms, by which diet may 

influence intestinal inflammation, including antigen presentation, prostaglandin imbalance or 

alteration of the gut microbiota, which may have severe effects on immune and inflammatory 

responses of the host [23-25]. Accordingly, diet and the effects it has on immune 

homeostasis are suggested as important factors in the development of IBD.  
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1.2. The role of nutrition in IBD 

1.2.1. Dietary factors in the pathogenesis of IBD 

 

Several studies examined the relationship between specific dietary factors and the risk of 

IBD, including the macronutrients carbohydrate, fat and protein in general, and subgroups 

such as refined sugar, fiber, saturated fatty acids, omega-3 and omega-6 fatty acids in 

specific. Other food groups like fruits, vegetables, meat and certain dairy products have also 

been investigated [22, 26, 27]. However, only high dietary intake of total fats, PUFAs, 

omega-6 fatty acids and meat seems to confer to an increased risk of Crohn‟s disease and 

ulcerative colitis. By contrast, high intake of fiber and fruits was associated with decreased 

risk of Crohn‟s disease and high intake of vegetables pointed at a decreased risk for the 

development of ulcerative colitis, as demonstrated by a recent meta-analysis of 19 studies 

comprising 2,609 IBD patients (1,269 Crohn‟s disease and 1,340 ulcerative colitis patients) 

and over 4,000 controls [28]. Accordingly, the noticeable rise of Crohn‟s disease in Japan 

was analyzed by an epidemiologic study, demonstrating that increased dietary intake of n-6 

polyunsaturated fatty acids (PUFAs) and animal protein together with a change towards a 

more westernized diet were found to be associated with increased risk of developing Crohn‟s 

disease [29].  

However, in spite of positive results in several clinical settings, the overall findings are 

equivocal because of insufficient data and methodological limitations, which might reflect that 

additional environmental and genetic factors modulate the impact of diet on IBD 

pathogenesis. Though, diet as a source of luminal antigens is still thought to play an 

important role in the immunopathogenesis of IBD. Whether antibodies against dietary 

antigens are a primary cause for IBD etiology or secondary to intestinal inflammation is yet to 

be established [30]. 

Major efforts have been made to analyze the effects of fatty acids in IBD development and 

several plausible underlying mechanisms could be revealed. For example, arachidonic acid 

(AA), derived from omega-6 fatty acids, serves as a precursor for eicosanoids, a family of 

proinflammatory signaling molecules. By contrast, eicosapentaenoic acid (EPA) and 

docosahexaenoic acid (DHA), which belong to the omega-3 fatty acids, have the ability to 

antagonize the formation of eicosanoid mediators from AA, which results in suppression of 

inflammatory cytokines [31]. Omega-3 fatty acids may also decrease the expression of 

various proinflammatory genes by serving as cofactors for transcriptional factors such as 

nuclear factor-κB (NF-κB). Furthermore, PUFAs may be integrated into cell membranes and 

thus can alter membrane structure and function or induce lipoxins and resolvins (signaling 

molecules involved in the resolution of inflammation) [32]. Effects of fatty acids have also 

been investigated in animal models of mucosal inflammation. Studies in IL-10-/- and dextran 
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sodium sulfate (DSS)-induced colitis models showed a reduction in tissue pathology and 

downregulation of proinflammatory cytokine expression after administration of a diet high in 

EPA [33, 34]. Moreover, a modulation of intestinal permeability was demonstrated by a study 

with rats being fed a high-fat diet based on lard (high in saturated fatty acids (SFA) and 

monounsaturated fatty acids (MUFAs)). Interestingly, these animals showed increased small 

intestinal permeability due to reduced tight junction protein expression, which was 

independent of an obese phenotype [35]. Hudert et al. showed that mice, which 

endogenously biosynthesized omega-3 PUFAs from omega-6 PUFAs produced anti-

inflammatory resolvins leading to effective reduction in inflammation and tissue injury in DSS-

induced colitis. The protective effect was probably enhanced by higher expression of trefoil 

factor 3 and zonula occludens-1 (ZO-1) [36].  

Less data is available concerning the molecular effects of high protein intake and diets rich in 

mono-, di- and polysaccharides or total carbohydrates on IBD pathogenesis and studies 

demonstrated equivocal outcomes [28, 37, 38]. By contrast, clear mechanisms could be 

attributed to the positive effects of dietary fiber. Fermentable fiber can be metabolized by the 

microbiota to short-chain fatty acids (SCFAs) (acetate, propionate and butyrate), lactate and 

gas [39]. These byproducts are suggested to exert anti-inflammatory and anti-carcinogenic 

functions [40] as exemplified by the SCFA butyrate, which may prevent transcription of 

proinflammatory cytokines by inhibiting NF-κB. Further, butyrate can enhance peroxisome 

proliferator-activated receptor (PPAR) γ activation, leading to reduced colonic permeability 

[41]. PPARγ primarily senses fatty acids and a mutation in PPARγ leading to insufficient 

activation of toll like receptor (TLR) 4-mediated activation of inflammatory pathways in 

response to commensal bacteria has recently been found to be associated with a subset of 

ulcerative colitis patients [42]. Moreover, several studies showed that colonic inflammation 

could be suppressed via PPARγ induction by dietary supplementation of conjugated linoleic 

acid (CLA) [43, 44]. This effect seemed to be associated with a CLA-dependent increase of 

regulatory T-cells [45, 46]. CLA is mainly found in dairy products but can also be produced 

from linoleic acid by the human gut microbiota [47]. Thus, CLA provides a link between diet, 

microbial compounds and the control of inflammatory responses related to IBD pathogenesis 

[48]. 

Another role for nutrient-specific receptors in the context of IBD is demonstrated by human 

polymorphisms in the vitamin D receptor (VDR), which is associated with increased 

susceptibility to IBD development [49, 50]. The active form of vitamin D (1,25-

dihydroxycholecalciferol) induces cathelicidin production by specific nutrient-gene interaction, 

thereby contributing to innate immune defense mechanisms as well as driving immune cell 

functions towards a regulatory state [51, 52]. Consequently, animal models for IBD deficient 
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in vitamin D or VDR show increased susceptibility to develop experimental IBD and vitamin D 

supplementation successfully ameliorated the pathogenesis of colitis in these mice [53, 54]. 

Apart from direct effects, dietary factors may also have indirect effects on IBD pathogenesis 

via modulation of the gut microbiota and its metabolites. High-fat diet has been shown to 

alter the microbiome including a decrease in Bacteroidetes and an increase in both 

Firmicutes and Proteobacteria independently of an obese phenotype in wild-type and 

RELMbeta knockout mice [55]. Moreover, it could be demonstrated that dietary fiber and 

prebiotics not only serve as energy substrates for intestinal bacteria, but may also induce a 

shift in the microbial composition [56]. Consistently, feeding of infants with breast milk, which 

besides antimicrobial, anti-inflammatory and immunomodulatory agents contains 

oligosaccharides that serve as prebiotics, has been shown to decrease the risk of developing 

Crohn's disease and ulcerative colitis [57-59]. 

 

1.2.2. Malnutrition in IBD 

 

Malnutrition is defined by the World Health Organization (WHO) as the cellular imbalance 

between the supply of nutrients and energy on the one hand, and the body's demand for 

them to ensure growth, maintenance, and specific functions, on the other [60]. Malnutrition is 

a common side-effect in patients with IBD, especially in active Crohn‟s disease. The most 

important causes of malnutrition are reduced food intake,[61, 62] presence of active 

inflammation [63] and enteric loss of nutrients, in periods of disease activity but also during 

remission [64]. Micronutrient deficiencies are most frequently observed for iron, folate, and 

vitamin B12, but vitamin E, vitamin A, beta-carotene, magnesium, selenium, and zinc also 

may be depleted. 

Several studies have reported weight loss in 70%-80% of hospitalized IBD patients and in 

20%-40% of outpatients with Crohn‟s disease [65, 66]. The prevalence of malnutrition is 

lower in patients with ulcerative colitis, but nutritional deficiencies may develop fast in these 

patients during periods of active disease [67]. Anaemia is very often seen in patients with 

IBD, the incidence being up to 80%, [68], most likely because of iron deficiency caused by 

blood loss through gastrointestinal lesions. Oral iron supplementation seems effective for 

short periods of time, but intolerance can lead to discontinuation in up to 21% of patients 

[69]. In addition, a significant number of children with IBD, especially in Crohn‟s disease have 

impaired linear growth. Increased energy expenditure from chronic inflammation, 

proinflammatory cytokines, such as TNF and IL-1, hormonal imbalances, decreased IGF-1, 

and exogenous steroids are suggested to be responsible factors. Moreover, as a 

consequence of malnutrition and malabsorption, protein-energy malnutrition has been found 

in 20–85% of patients with Crohn‟s disease and may further decrease quality of life [62, 70]. 
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1.3. Medical therapy of IBD 

1.3.1. Conventional therapy 

 

Several different therapeutics and therapeutic strategies are available for IBD patients. The 

actual treatment of each patient may however depend on specific goals, such as relief of 

symptoms, induction of remission in patients with active disease, prevention of relapse, 

healing of fistulas, or avoidance of emergency surgery. The majority of IBD patients use 

conventional therapy (namely, aminosalicylates, corticosteroids, antibiotics and 

immunomodulatory agents) for prolonged periods of time [71]. Classic drug treatments aimed 

to induce and maintain the patient in remission and ameliorate the disease‟s secondary 

effects, rather than modifying or reversing the underlying pathogenic mechanism [72]. 

However, over the past decade, the goals of therapy for IBD have changed. In addition to 

induction and maintenance of corticosteroid-free remission, the expectations of treatment 

have been raised to include mucosal healing, avoidance of surgery and reduced rates of 

admission to hospital, as well as minimizing adverse effects [73]. 

Anti-inflammatory 5-aminosalicylic acid (5-ASA, Mesalazine) remains the first-line therapy for 

both induction and maintenance of remission in ulcerative colitis and is well-tolerated in the 

majority of patients. However, their use in patients with Crohn's disease remains limited, 

although some evidence suggests that 5-aminosalicylate therapy could help to prevent 

recurrence following surgically induced remission [74]. Yet, not all patients respond to 5-ASA 

therapy within the initial 2–4 weeks and high rates of non-adherence among patients (up to 

60%) may affect treatment efficacy [75, 76].  

Alternatively, corticosteroids are highly effective agents for inducing remission of active IBD 

in Crohn‟s disease and ulcerative colitis patients. Glucocorticoids bind to the glucocorticoid-

receptor, which induces a signaling cascade that results in upregulation and downregulation 

of anti-inflammatory and proinflammatory factors, respectively. However, corticosteroids do 

not maintain remission and their adverse effects may be severe, which has led to an 

increased emphasis on limiting the duration and cumulative dose of steroids in IBD [77].  

Immunomodulatory drugs may be an alternative therapeutic option for IBD patients. 

Azathioprine and 6-mercaptopurine have been used for more than 40 years in the treatment 

of both Crohn's disease and ulcerative colitis. They are effective for both induction [78] and 

maintenance [79, 80] of remission in both diseases. These thiopurine antimetabolites impair 

purine biosynthesis and inhibit cell proliferation. Findings from a number of studies highlight 

the ability of thiopurines to achieve mucosal healing [81, 82], however thiopurine therapy 

may become ineffective in just over half of all patients and side effects may appear. Although 

immunosuppressant agents have significant adverse effects, they are safer and better 

tolerated than long-term corticosteroid therapy [83]. 
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Furthermore, antibiotics may be applied in patients with IBD in specific situations. Antibiotics 

may be used to induce remission in mild to moderate Crohn‟s disease. They can also be 

administered as adjunctive treatment along with other medications for therapy of active IBD 

and for specific complications or prophylaxis for disease recurrence in postoperative Crohn‟s 

disease [84]. Yet, no good evidence supports their use in ulcerative colitis and significant 

side effects of prolonged systemic antibiotic use must be balanced against their potential 

benefits in Crohn‟s disease [85]. 

 

 

1.3.2. Biologicals 

 

The development of the new biologic therapies was made possible by the clarification of the 

immunopathogenic mechanisms underlying chronic gut inflammation in IBD [86, 87]. In 

particular, the understanding of the primary role of the potent proinflammatory cytokine tumor 

necrosis factor (TNF) in mediating the classic lesions of IBD, i.e. ulcers, fistulas, granulomas 

and intestinal strictures, suggested that targeting this cytokine could offer a better therapeutic 

chance to IBD patients than conventional therapies [88]. Infliximab belongs to the first 

generation of anti-TNF antibody-based therapeutics. It is a chimeric immunoglobulin (25% 

mouse, 75% human) that binds to and neutralizes TNF, representing a new class of 

therapeutic agents for treating IBD [89]. Although infliximab was specifically designed to 

target TNF, it also may have more complex actions. Infliximab binds membrane-bound TNF 

and may cause lysis of these cells by complement- and antibody-dependent cellular 

cytotoxicity Thus, infliximab may deplete specific populations of subepithelial inflammatory 

cells [90, 91]. Its long-term role in Crohn‟s disease is evolving, but emerging evidence 

supports its efficacy in inducing and maintaining remission, healing mucosa, preventing 

recurrence of fistulas, reducing hospitalizations and surgical operations [92, 93]. The impact 

of anti-TNF therapy on mucosal healing has also been investigated in ulcerative colitis. 

Infliximab achieved mucosal healing in nearly half of ulcerative colitis patients after 54 weeks 

in randomized double-blind placebo-controlled trials [94]. Unfortunately, about 50% of IBD 

patients undergo relapse within 1 year after cessation of infliximab [95]. Moreover, loss of 

response, also known as secondary non-response, occurs in a significant proportion of 

patients treated with anti-TNF therapy, and its risk has been estimated to be 13% per patient 

and year (e.g. due to development of anti-drug antibodies (ATI)) [96]. The relatively high 

costs of anti-TNF antibodies and their potential toxicity, mostly related to opportunistic 

infections and malignancy, have led to debate regarding the time of starting and the duration 

of treatment with biologicals [97]. 
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The introduction of immunomodulators such as Azathioprine, and biologicals like antibodies 

to TNF has shifted the benchmark from clinical remission toward mucosal healing, which 

could not be accomplished by corticosteroids. However, one-third of patients do not clinically 

respond to anti-TNF antibodies, and durable remission is achieved in only a minority of the 

responder patients [96]. 
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1.4. Nutritional therapy in IBD 

1.4.1. Maintenance of remission 

 

The European Society for Parenteral and Enteral Nutrition (ESPEN) [98] published 

guidelines for the role of enteral nutrition (EN) in patients with IBD suggesting oral nutritional 

supplements including tube feeding in undernourished patients with Crohn‟s disease or 

ulcerative colitis to improve nutritional needs. Thus, EN has often been used as an adjunctive 

therapy to correct or to avoid malnutrition [99-101]. In addition, several authors have 

considered EN as a strategy to induce and maintain remission in patients with Crohn‟s 

disease using supplementary oral formula in combination with a regular diet throughout the 

day. This approach may also be used adjunctive to medical therapy [99, 102, 103]. There 

have been several studies assessing the efficacy of EN for maintenance of medically [104-

106] or surgically [107-109] induced remission. Four prospective trials compared 

maintenance of remission between patients who received EN (elemental diet) and patients 

who did not. All of these studies showed a significantly better clinical remission rate in 

patients who had been treated with elemental diet, and notably, in one of these studies, [105] 

elemental diet therapy was associated with an improved endoscopic disease activity index. 

This observation suggested that EN may alleviate mucosal inflammation and this effect may 

promote better remission outcome. Thus, long-term EN supplementation may significantly 

reduce clinical and endoscopic recurrence after resection in Crohn‟s disease. Moreover, a 

retrospective review of children with new diagnosed Crohn's disease confirmed the 

superiority of eight weeks of enteral feeding over treatment with corticosteroids in 

maintaining remission, improving nutrition status, and recovering linear growth. In addition, 

mucosal healing was confirmed endoscopically in children on EN [110]. However, in contrast 

to Crohn‟s disease, EN therapy has not been adequately evaluated and seems to be less 

effective in patients with active ulcerative colitis [111, 112]. 
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1.4.2. Induction of remission 

 

1.4.2.1. Parenteral nutrition (PN) 

Dudrick et al. [113] were the first to suggest that PN was safe and possibly beneficial to 

patients with IBD. The use of PN for managing adults with Crohn‟s disease succeeded in 

achieving clinical remission and avoiding surgery [113, 114]. However, the remission was 

often short lived and the number of patients remaining in remission three months later varied 

between 20% and 79% depending on the length of PN administration, population of patients, 

definitions of remission or recurrence and simultaneous use of medications [115].  PN was 

also proven a useful adjunctive therapy for ulcerative colitis patients requiring bowel rest and 

nutritional support, though not effective in induction of remission [116]. 

Since EN was shown to be at least as efficient as PN including lower costs and fewer 

significant side effects, the indications for PN support are restricted to severe malnutrition 

and for pre- and postoperative nutritional support, in both Crohn‟s disease and ulcerative 

colitis [117, 118]. 

 

 

1.4.2.2. Enteral nutrition (EN) 

EN was shown to induce clinical remission, improve nutritional status and body composition, 

induce mucosal healing, decrease pro-inflammatory cytokine levels and reduce serum 

inflammatory markers in patients with Crohn‟s disease [119-121]. Three meta-analyses and 

two Cochrane Database Systematic Reviews published in recent years examined the 

efficacy of EN compared with corticosteroid therapy in Crohn‟s disease. The most recent 

included 192 patients treated with EN and 160 treated with steroids, which yielded a pooled 

OR of 0.33 favoring steroid therapy (95% CI: 0.21-0.53), and patients in whom remission was 

achieved, the relapse rates at 12 months were identical (65% and 67%) regardless of the 

therapy [122-124]. 

In spite of data suggesting that corticosteroid therapy produces higher efficacy rates as 

compared with EN in inducing remission, the results of dietary intervention studies should be 

interpreted with reservations. There are numerous factors that potentially may influence the 

efficacy of EN, such as population demography, study design, compositions of enteral 

formulae, route of administration, patient compliance and timing of endpoint assessment as 

well as definition of clinical remission. Additionally, the long-term efficacy of EN is rarely 

reported and therefore, is less well-established [30]. Thus, comparison of efficacy alone 

between EN and corticosteroids is not sufficient, as the two treatment modalities possess 

entirely different safety profiles. EN has minor, immediate side effects and no known long-

term adverse effects, in contrast to corticosteroid therapy that may exhibit severe 
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complications. Especially for the patients who are steroid-refractory, steroid-dependent or 

steroid-intolerant, EN should be considered as alternative treatment strategy. As adjunctive 

therapy, EN is recommended for any malnourished patient or for patients with difficulty in 

maintaining normal nutritional status [99]. However, there is no evidence to support the use 

of EN as primary therapy in ulcerative colitis [112]. 

 

 

1.4.2.3. Exclusive enteral nutrition (EEN) in pediatric Crohn‟s disease 

A number of controlled clinical trials conducted in the late 1980s demonstrated that elemental 

diet was effective in inducing clinical remission in children with active Crohn's disease [125]. 

A meta-analysis of five randomized clinical trials comprising 147 pediatric patients 

demonstrated that EEN was as effective as corticosteroids, regarding the induction of 

remission in children [relative risk = 0.95 (95% CI 0.67-1.34)] [126]. Besides improved growth 

and nutritional status, treatment with EEN may induce remission in up to 85% of newly 

diagnosed patients, while avoiding the adverse effects of steroids. These findings make EEN 

the preferred choice of treatment in children with active Crohn‟s disease [126, 127]. Thus, in 

the current European guidelines for the treatment of active Crohn's disease in children, EEN 

is recommended as the primary therapy [128]. 

Johnson et al. investigated whether partial enteral nutrition (PEN) might be as effective as 

EEN in induction of remission in pediatric Crohn‟s disease. They randomized children with 

active Crohn‟s disease to either receive all of their nutrition as elemental diet (EEN) or only 

50% (PEN). Total nutritional intake was similar in both groups, but the remission rate was 

higher in the EEN group (42%) compared with the PEN group (15%) [129]. Regarding the 

effects of disease location on EEN efficacy, studies in children showed contradictory results. 

Two studies found no difference in the remission rate of children with ileal versus isolated 

colonic disease [130, 131], in contrast, another report noted a decreased response rate in 

patients with isolated colonic disease. There is no convincing evidence that the effect of EEN 

is restricted to small bowel disease only but the impact of disease location and other 

environmental factors on clinical response to EEN requires further evaluation [132]. In 

general, EEN is safe and well tolerated with minimal side effects such as nausea, abdominal 

pain, flatulence, or diarrhea [133]. The only reported severe adverse effect associated with 

EEN is a single case of re-feeding syndrome [134]. 

 

Numerous studies demonstrated that corticosteroids failed to induce mucosal healing in the 

treatment of Crohn‟s disease. By contrast, EN showed positive effects of on mucosal integrity 

in several studies [135, 136] associated with downregulation of mucosal proinflammatory 

cytokine profiles in both the ileum and the colon. Given that the ultimate goal in the treatment 
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of Crohn‟s disease is mucosal healing (in addition to symptomatic improvement) this 

advantage of EN over corticosteroids seems valuable regarding the choice of a therapeutic 

strategy [137]. 

 

 

1.5. Celiac disease 
 

In contrast to IBD, in celiac disease, the role of diet as environmental factor seems quite 

clear and nutritional means are highly efficient for treatment. Celiac disease is one of the 

most common inflammatory disorders of the small intestine, with an incidence of 1% in 

western populations. In genetically susceptible individuals (human leukocyte antigen (HLA)-

DQ2 or HLA-DQ8), the ingestion of gluten containing cereals trigger an immune-mediated 

enteropathy [138]. Deamidation of gliadin peptides by tissue transglutaminase (tTG) enables 

them to be bound with high affinity to HLA-DQ2 or HLA-DQ8 molecules of antigen presenting 

cells. The inflammatory process can be avoided by a gluten-free diet, which will normalize 

the clinical manifestations, represented by mucosal inflammation, crypt hyperplasia, small 

intestinal villous atrophy, increased intestinal permeability and elevated levels of 

intraepithelial lymphocytes (IELs) [139-141]. 

Another common disorder of the gastrointestinal tract is irritable bowel syndrome (IBS), a 

functional disorder that leads to symptoms such as abdominal pain, cramping and changes 

in bowel movements. Interestingly, in clinical practice, some patients for which celiac disease 

has been excluded show symptoms of IBS and respond well to a gluten-free diet [142]. 

Increasing discussion has emerged over the last several years, regarding the topic of gluten 

sensitivity as a cause of IBS symptoms, termed “non-celiac gluten intolerance” [143-145]. 

Indeed, wheat has been identified to be one of the most common inducers of gastrointestinal 

symptoms and gluten is suggested to be the major factor. Yet, it is not known whether gluten 

is the only responsible agent for enteral irritation in this context [146, 147]. 
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1.6. Animal models of IBD 
 

Understanding the complex interplay between genetic and environmental factors that lead to 

IBD pathogenesis is a demanding challenge. Animal models are useful tools for this respect, 

providing fundamental insight into the importance of genetic and immunologic regulatory 

mechanisms. 

 

1.6.1. Ileitis model (TNFΔARE/WT mouse) 

 

Anti-TNF neutralizing antibodies are efficient in induction of remission in IBD therapy [97]. 

However, the specific molecular and cellular mechanisms of the pathogenic action of TNF 

are still not completely understood. Gene targeting of AU-rich elements (ARE) in the 

untranslated region of the TNF mRNA in mice (TNFΔARE/WT mice) leads to impaired regulation 

of TNF translation and development of a severe ileitis. The TNFΔARE/WT mouse is one of the 

very few Crohn‟s disease-like models leading to transmural inflammation in the terminal 

ileum. Progression of pathology is accompanied by villous atrophy, crypt hyperplasia and 

intestinal leukocyte infiltration, closely resembling the clinical manifestations of human 

Crohn‟s disease. Intestinal inflammation in TNFΔARE/WT mice is associated with early reduction 

of CD8αα-expressing intraepithelial lymphocytes and predominance of TNF/IFN-γ producing 

CD8αβ lymphocytes in the epithelium. Furthermore, lamina propria CD4+ lymphocytes show 

decreased Th1 and increased Th17 responses and increased αEβ7 integrin expression can 

be observed in peripheral intestinal-homing CD8αβ lymphocytes [148, 149]. Interestingly, 

selective chronic overproduction of TNF by intestinal epithelial cells (IEC) suffices to cause 

full development of intestinal pathology and is associated with early activation of the 

underlying intestinal myofibroblast, a cell type previously identified as a sufficient target of 

TNF for disease development in the TNFΔARE/WT mouse model [150]. The pathogenesis of 

chronic ileitis seems to be CD8+ T cell dependent, as genetic ablation of beta-2 microglobulin 

or β7 integrin results in complete amelioration of intestinal pathology whereas genetic 

deletion of CD4 exacerbates Crohn‟s disease-like ileitis [151]. 

 

1.6.2. Colitis model (IL-10-/- mouse) 

 

IL-10 is a well-known suppressor of Th1 cells and macrophage effectors functions. Several in 

vitro studies have shown that IL-10 inhibits IL-12 and TNF production, T cell proliferation and 

costimulatory B.7.1 and B.7.2 molecule expression. Furthermore, IL-10 may also promote 

the formation of antigen-specific regulatory T cells [152]. Mice with targeted deletion of the 

IL-10 gene (IL-10-/-) spontaneously develop a chronic enterocolitis with massive infiltration of 
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lymphocytes, neutrophils and activated macrophages [153]. IL-10-/- colitis is accompanied by 

a Th1 cytokine response, which can be ameliorated by neutralizing antibodies to IL-12p40 

and to a lesser extent IFN-γ or systemic administration of recombinant IL-10. Colitis in IL-

10−/− mice does not develop under germ-free conditions and is thus suggested to be driven 

by antigens of the mucosal microbiota [154]. 

 

1.6.3. T cell transfer model of colitis and ileitis 

 

Adoptive transfer of CD4+CD45RBHi T cells isolated from the spleens of immunocompetent 

donor mice in immunodeficient RAG2−/− recipient mice causes a wasting syndrome with 

transmural intestinal inflammation primarily in the colon. Inflammation starts five to ten weeks 

after T cell transfer, depending on the microbiota [155-157]. Adoptive transfer of CD4+ IL10-/- 

T cells is also a suitable method to induce experimental colitis and several studies identified 

IL-10 and TGF-β as central anti-inflammatory factors in this model. Regulatory T cells 

prevent the onset of gut inflammation and antigen-specific immune responses, when 

transferred together with pathogenic CD4+CD45RBHi T cells. Systemic administration of 

recombinant IL-10 or TGF-β has been shown to inhibit pathogenesis in a similar way. 

Moreover, bacterial antigens play a crucial role for pathology since treatment with antibiotics 

or germ-free breeding of recipient mice is associated with significantly less inflammatory 

response [158]. Another interesting yet underappreciated aspect of this model is the 

development of small bowel inflammation, which is characterized by leukocyte infiltration and 

loss of goblet cells and paneth cells most noticeable in the ileum [159]. 

 

1.6.4. Elemental diet and animal models of mucosal inflammation 

 

The beneficial effect of enteral nutrition using elemental diet (ED) in the treatment of Crohn's 

disease has been demonstrated frequently. Alteration of the gut microbiota, low antigenicity 

and low fat content of the diet as well as improvement of nutritional status are suggested to 

play a role in the anti-inflammatory effect of ED, however the exact mechanisms remain to be 

elucidated. 

Menezes et al. tested the effects of ED and Chow diet on conventional C57BL/6 wild type 

mice and compared differences in immunological parameters. The authors demonstrated 

that ED-fed mice presented an underdeveloped gut-associated-lymphoid tissue (GALT) with 

lower numbers of TCRαβ+ IELs and lamina propria cells and low levels of secretory IgA when 

compared to Chow-fed mice. ED-fed mice showed a systemic decrease in the production of 

IgG and IgA as well as a skewing towards a Th2 profile of cytokine production upon in vitro 

stimulation with increased IL-4 and a reduced IFN-γ and IL-6 secretion [160]. Interestingly, 
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Shou et al. found significant bacterial translocation to mesenteric lymph nodes but not other 

organs in conventional C57/BL6 mice being fed an ED. Further experiments suggested that 

enteral feeding of ED downregulated host oxidative and antimicrobial mechanisms and TNF-

dependent cytotoxicity in conventional mice [161]. Furthermore, a rat model of 

granulomatous enteritis induced by a single intramural injection of peptidoglycan-

polysaccharide showed significantly decreased macroscopic and histologic damage scores 

when being fed ED compared with rats being fed a control diet. ED inhibited the increase in 

the numbers of macrophages and IL-2R-positive T-cells in Peyer's patches, associated with 

decreased production of nitric oxide and generation of oxygen free radicals [162]. In IL-10-/- 

mice, partial replacement of dietary omega-6 fatty acids with medium-chain triglycerides in 

an experimental diet decreased the incidence of spontaneous colitis. Feeding of the 

experimental diet resulted in fewer total and apoptotic intraepithelial CD3+ and lamina propria 

CD3+CD4+ lymphocytes, as well as reduced expression of IL-6, interferon-y and TLR9 [163]. 

Accordingly, in a T-cell transfer model of colitis using IL-10-/- donor mice in combination with 

SCID recipients, ED significantly suppressed intestinal inflammation. The total amount of 

cecal bacteria decreased in ED-fed mice and the diversity of bacterial species decreased to 

60% of that found in the regular diet groups, suggesting a strong impact of ED on the gut 

microbiota [164]. Another study was performed in TCR α-/- mice to assess the potential role 

of luminal antigens on the development of chronic colitis. ED-fed TCR α-/- mice showed no 

pathologic features of colonic inflammation. The protective state was associated with 

suppressed mucosal B-cell responses and decreased production of Th2-type cytokines in 

ED-fed mice compared with mice on regular diet. However, rectal administration of 

Bacteroides vulgatus resulted in development of intestinal inflammation. The authors 

concluded that ED-induced alteration of the intestinal microbiota prevented the development 

of IBD in TCR α-/- mice [165]. 

These studies demonstrate that ED may have beneficial effects on intestinal inflammation in 

several mouse models with diverse genetic backgrounds. A low antigenicity of the diet in 

combination with indirect immunomodulatory effects through an alteration of the gut 

microbiota might influence mucosal immune responses and maintain intestinal homeostasis. 

However, the precise mechanism of action remains to be revealed.  
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2. AIMS OF THE WORK 
 

Nutritional therapy may be a valuable option for the treatment of IBD patients, with minimal 

adverse effects compared with conventional therapeutics. However, the underlying 

mechanisms are not completely understood and data from clinical studies present equivocal 

results. Animal models may serve as a tool to clarify the complex interactions of genetics, 

environmental factors and microbial influence on disease pathogenesis. 

We aimed at elucidating the impact of dietary intervention therapy on inflammation 

development in animal models with a strong genetic predisposition. In our study, we focused 

on the TNFΔARE/WT mouse model to evaluate the effects of a semi-elemental diet on the 

pathogenesis of Crohn‟s disease-like ileitis at histological, cellular and transcriptional level in 

combination with functional analysis of diet-induced alterations of the cecal microbiota. In 

addition, IL-10−/− mice and a T-cell adoptive transfer model were used to analyze the effects 

of dietary intervention on colitis and ileitis development with respect to different genetic 

predispositions.  

 

 

 

  



3. MATERIALS AND METHODS 

 

23 
 

3. MATERIALS AND METHODS 
 

3.1. Animals 
 

Heterozygous TNFΔARE/WT and WT mice (C57BL/6 background) were conventionally raised at 

constant room temperature (22 ± 2 °C), air humidity (55 ± 5%), and a light/dark cycle of 

12/12 h. Ultrapure water and standard Chow diet (Ssniff R/M-H, Soest, Germany) were 

provided ad libitum. At seven weeks of age, mice were transferred to a semi-synthetic 

experimental diet (Ssniff E15000, Soest, Germany or Altromin C1000, Lage, Germany) or as 

indicated in the experiment. Mice were sacrificed by cervical dislocation at the age of 18 

weeks or as indicated. 

 

Interleukin-10 deficient (IL-10-/-) mice (129/SvEv background) were raised under specific 

pathogen-free (SPF) conditions. IL10-/- mice were moved to a conventional animal facility at 

seven weeks of age being provided ultrapure water and standard Chow (Ssniff R/M-H, 

Soest, Germany) or experimental diet (Altromin C1000, Lage, Germany) ad libitum. Mice 

were sacrificed by cervical dislocation at the age of 24 weeks. 

 

Lymphocyte-deficient Rag2-/- mice (129/SvEv background) were reconstituted with 5x105 

CD4+ IL-10-/- T-cells suspended in 200μl of PBS by intraperitoneal injection at 7 weeks of 

age. CD4+ IL-10-/- T-cells were positively selected from donor IL-10-/- mice (129/SvEv 

background, SPF conditions) using FITC-conjugated anti-CD4 antibodies (FITC Rat Anti-

Mouse CD4, BD Pharmingen) and anti-FITC MicroBeads (LS columns, Miltenyi Biotec, 

Bergisch Gladbach, Germany) in combination with magnetic cell separation columns (LS 

columns, Miltenyi Biotec, Bergisch Gladbach, Germany) according to the manufacturer‟s 

protocol. The purity of isolated CD4+ IL-10-/- T-cells was determined by flow cytometric 

analysis using the LSRII flow cytometer in combination with FACSDiva software (BD 

Bioscience) and was >90% in all experiments. Recipient Rag2-/- mice were moved from SPF 

to conventional conditions two weeks before transfer. Ultrapure water and standard Chow 

diet (Ssniff R/M-H, Soest, Germany) or experimental diet (Ssniff E15000, Soest, Germany) 

were provided ad libitum. Body weights were measured once a week and mice were 

sacrificed by cervical dislocation 10 weeks after transfer.  
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3.2. Diets 
 

The following diets were used as indicated in the experiments (Table M1). 

 

Table M1. Diet description and information. 

Description Name Manufacturer 

   
Semi-synthetic experimental diet C1000 Altromin, Lage, Germany 

Semi-synthetic experimental diet E15000 Ssniff, Soest, Germany 

Experimental diet fortified with 10g Chow/kg 1% Chow Ssniff, Soest, Germany 

Experimental diet fortified with 100g Chow/kg 10% Chow Ssniff, Soest, Germany 

Experimental diet fortified with 300g Chow/kg 30% Chow Ssniff, Soest, Germany 

Experimental diet fortified with 700g Chow/kg 70% Chow Ssniff, Soest, Germany 

Standard Chow diet R/M-H V1534-0 Ssniff, Soest, Germany 

Autoclavable Chow diet R/M-H V1534-3  Ssniff, Soest, Germany  

Experimental diet fortified with 10g Gluten/kg Glu Altromin, Lage, Germany 

Wheat depleted Chow diet  Wheat (-W) Ssniff, Soest, Germany 

   

Gluten was purchased from Sigma-Aldrich (Steinheim, Germany). For details about nutrient 

composition, see Appendix 1. 

 

 

3.3. Histological scoring 
 

Tissues were fixed in 4% neutral buffered formalin and embedded in paraffin. Distal ileal or 

distal colonic sections (5 μm) were stained with hematoxylin and eosin (H&E) (Sigma-Aldrich, 

Steinheim, Germany). Histological scoring was performed by blindly assessing the degree of 

lamina propria mononuclear cell infiltration, crypt hyperplasia, goblet cell depletion and 

architectural distortion in the different gut sections, resulting in a score from 0 (not inflamed) 

to 12 (massively inflamed), as previously described [166].  

 

 

3.4. Immunohistochemical labeling 
 

Paraffin embedded tissue was cut into 5μm sections using a Leica RM2255 and applied onto 

polylysine coated slides, air dried at room temperature for 1h and dried at 37°C over night. 

Samples were deparaffinized and antigens were unmasked by incubation in boiling 10mM 

sodium citrate buffer (pH 6.0) (Roth, Karlsruhe, Germany) for 10min. Immunostaining was 

performed according to the protocol provided by Cell Signaling. Anti-CD3 antibody (Abcam, 
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Cambridge, UK) was used in combination with AlexaFluor 546 goat anti rabbit IgG 

(Invitrogen Carlsbad, USA). Briefly, for labeling, slides were washed in PBS (pH 7.4) and 

blocked with 5% normal goat serum for 60min, followed by incubation with the primary 

antibody overnight at 4°C. Slides were washed in PBS and incubated with the fluorochrome-

conjugated secondary antibody for 90 min at RT. Confocal microscopy was performed using 

LAS AF Version 2.3.0 (Leica Microsystems). 

 

 

3.5. RNA isolation, reverse transcription and real-time PCR 
 

Tissue samples (0.5 cm) from distal ileum and distal colon were ground in liquid nitrogen. 

Total RNA was isolated using the column-based RNeasy Mini Kit (Qiagen, Hilden, Germany) 

according to the manufacturer‟s protocol. RNA concentrations and purity (A260/A280 ratio) 

was determined by spectrophotometric analysis (ND-1000 spectrophotometer, NanoDrop 

Technologies, Willigton, USA). Reverse transcription was performed using 1μg total RNA. 

The adequate amount of RNA for 1µg was mixed with 1µl random-hexamer primers 

(500ng/µl) and filled up to 12µl with PCR-H2O. After incubation for 5min at 65°C in a 

thermocycler, 8μl of a solution containing 4µl of 5x First Strand Buffer, 2µl of 0.1M DTT, 1µl 

of RNase Out (40U/µl) and 1µl MMLV-reverse transcriptase (200U/µl) were added to each 

sample. The mixture was incubated for 60min at 37°C using a thermocycler, followed by 

heating to 99°C for 1min.  

Real-time PCR was performed using 1μl cDNA in a Light Cycler ® 480 (Roche Diagnostics, 

Mannheim, Germany) applying the Universal Probe Library system according to the 

manufacturer‟s protocol. Relative induction of gene mRNA expression was normalized to 

GAPDH expression and calculated as fold change against the mean of the control group 

using the Light Cycler® 480 software. Primer sequences are given in Table M2.  
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Table M2. Primer sequences for real-time PCR. 

Targert gene Forward primer Reverse primer UPL probe 

 
  

 

Tnf (NM_013693.2) 5‟-tgcctatgtctcagcctcttc-3‟ 5‟-gaggccatttgggaacttct-3‟ #49 

Ifng (ENSMUST00000068592.3) 5‟- ggaggaactggcaaaaggat-3‟ 5‟- ttcaagacttcaaagagtctgagg-3‟ #21 

Tlr2 (AF124741.1) 5‟- ggggcttcacttctctgctt-3‟ 5‟- agcatcctctgagatttgacg-3‟ #50 

Tlr4 (NM_021297.2) 5‟-ggactctgatcatggcactg-3‟ 5‟-ctgatccatgcattggtaggt-3‟ #2 

Tlr5 (NM_016928.2) 5‟-ctggagccgagtgaggtc-3‟ 5‟-cggcaagcattgttctcc-3‟ #1 

Lbp (NM_008489.2) 5‟-acctctgacctgcagcctta-3‟ 5‟-ggacattgtcgatctctgctg-3‟ #53 

Tlr9 (NM_031178.2) 5‟-gaatcctccatctcccaacat-3‟ 5‟-ccagagtctcagccagcact-3‟ #79 

Nod2 (NM_145857.2) 5‟-tgtggagtcaccgcaaaac-3‟ 5‟-tcctctgtgcctggaactct-3‟ #100 

Madcam1 (L21203.1) 5‟- ggggaggtgaccaatctgta-3‟ 5‟- ataggacgacggtggagga-3‟ #72 

Icam1 (NM_010493.2) 5‟- cccacgctacctctgctc-3‟ 5‟- gatggatacctgagcatcacc-3‟ #81 

Ip10 (NM_021274.1) 5‟- gctgccgtcattttctgc-3‟ 5‟- tctcactggcccgtcatc-3‟ #3 

Il15 (NM_008357.1) 5‟- cagctcagagaggtcaggaaa-3‟ 5‟- catgaagaggcagtgctttg-3‟ #106 

Ocln (NM_008756.2) 5‟- tccgtgaggccttttgaa-3‟ 5‟- ggtgcataatgattgggtttg-3‟ #10 

Zo1 (ENSMUST00000102592.2) 5‟- cgcggagagagacaagatgt-3‟ 5‟- agcgtcactgtgtgctgttc-3‟ #81 

    

 

 

3.6. IEL/LPL isolation  
 

Mice were sacrificed and the ileum was removed. Mesenteric fat and peyer‟s patches were 

trimmed off. The ileum was cut open longitudinally and washed with wash buffer (HBSS, 2% 

FBS). Digestion buffer (HBSS, 5mM EDTA, 1mM DTT, 10% FBS) was freshly prepared 

before use and prewarmed in 37°C water bath until use. The tissue was cut in 0.5 cm pieces 

and incubated with 5 ml digestion buffer in a horizontal shaker at 220 rpm, 37°C, 30 min. 

Undigested tissue residues were mashed through a 100 µm cell strainer (BD Falcon). Tissue 

cell suspensions were combined and centrifuged at 350 g, 4°C, 5 min. For density gradient 

centrifugation, the pellet was resuspended in 40% isotonic percoll (Sigma-Aldrich, Steinheim, 

Germany) and put beneath a 20% isotonic percoll layer. Another layer of 80% isotonic percoll 

was put beneath both layers. Density gradient centrifugation was performed at 720 g, 20 min, 

4°C. The IEL/LPL fraction was collected at the interface of 80% and 40% percoll layers. Cells 

were washed in wash buffer, counted using a Neubauer counting chamber and prepared for 

flow cytometric analysis. 
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3.7. Flow cytometry 
 

For flow cytometric analysis, cells were washed in staining buffer (HBSS, 2% FBS), 

centrifuged at 350 g, 5 min, 4°C and resuspended in 50 µl staining buffer (1x106 cells in 50 

µl). Staining solution (50 µl staining buffer including a mixture of fluorochrome conjugated 

antibodies (1 µl each) as indicated in the experiments) was added and incubated at 4°C, 20 

min. Cells were washed, resuspended in 500 µl staining buffer and analyzed (1x104 cells 

were acquired per sample) using the LSRII flow cytometer in combination with FACSDiva 

software (BD Bioscience). The following antibodies were used: Anti-CD3-APC-Cy7, Anti-

CD4-PE-Cy7, Anti-CD8α-PE, Anti-CD8β-FITC (all from BD Pharmingen). Regulatory T-cells 

were analyzed using the Mouse Th17/Treg Phenotyping Kit (BD Pharmingen) according to 

the manufacturer‟s protocol. 

 

 

3.8. Particle size distribution measurement 
 

Diet pellets (50 g) were dissolved in dH2O (500 ml) at RT on a magnetic stirrer. Ceca and 

small intestines were dissected from animals, cecal and ileal content was collected and 

dissolved in dH2O (100 mg/ml). 

The samples were analyzed by laser diffraction (Malvern Mastersizer MS2000, software 

version 5.6) with wet analysis using the Hydro 2000S dispersion unit according to the the 

manufacturer‟s protocol. Data were compared based on calculated volume based particle 

size D[4,3].  

 

 

3.9. FT-IR spectroscopy 
 

Cecal contents were diluted in PBS (1:10), vortexed and centrifuged at 350 g, 5 min, RT. 

Supernatants were collected and centrifuged at 10000 g, 3 min, RT. Supernatants were 

discarded and pellets were resuspended in the same volume of dH2O. Samples (technical 

duplicates) were transferred onto a ZnSe support material (Bruker) and dried (44°C, 30 min). 

Spectra were recorded using an IFS-28B FT–IR spectrometer (Bruker) and analyzed using 

OPUS (Bruker, software version 3.1). The average linkage algorithm was used for cluster 

analysis on vector normalized first derivatives of the spectra. 
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3.10. Cecal lysates 
 

Cecal lysates (CL) were prepared from cecal contents of WT and TNFΔARE/WT mice on Chow 

and experimental diet as indicated in the experiments. CL preparation was performed as 

previously described [167, 168]. Briefly, the cecum was dissected, cecal content was 

collected, diluted in sterile PBS (1:1) and vortexed thoroughly. DNAse I (0.1 mg/ml) was 

added and incubated for 15 min at RT. Cecal suspensions (0.5 ml) were mixed with mg of 

0.1 mm glass beads (ROTH) and disrupted in a bead-beater (FastPrep-24, MP Biomedicals 

LLC) at 6.5 M/s, 0.5 min (four cycles interrupted by 3 min on ice). The glass beads and 

unlysed cells were removed by centrifugation at 350 g for 5 min. Supernatants were collected 

and centrifuged at 10000 g, 10 min. After centrifugation, the supernatant was filter-sterilized 

(0.22 μm filter) and the protein concentration was adjusted to 1.0 mg/ml with PBS using a 

Bradford assay according to the manufacturer‟s protocol (Roti-Quant, Roth, Karlsruhe, 

Germany). Cecal lysates were aliquoted and frozen at −80°C. 

 

 

3.11. Dietary suspensions 
 

Diet pellets were ground under sterile conditions and dissolved in sterile PBS (3 g in 12 ml). 

Suspensions were vortexed and incubated in a horizontal shaker at 220 rpm, 37°C, 30 min. 

Dietary suspensions (DS) were vortexed and centrifuged at 350 g, 5 min. Supernatants were 

collected and centrifuged at 10000 g, 10 min. After centrifugation, the supernatant was filter-

sterilized (0.22 μm filter) and the protein concentration was adjusted to 1.0 mg/ml with PBS 

using a Bradford assay according to the manufacturer‟s protocol (Roti-Quant, Roth, 

Karlsruhe, Germany). DS were aliquoted and frozen at −80°C. 

 

 

3.12. Peptic-tryptic digestion of gluten (PT-gluten) 
 

PT-gluten was prepared as previously described [169]. Briefly, gluten from wheat (Sigma-

Aldrich, Steinheim, Germany) was dissolved (1 mg/ml) in 10 mM HCl (pH 1.8) and pepsin 

(Sigma-Aldrich, Steinheim, Germany) was added (1:100 enzyme:substrate ratio). Gluten was 

digested for 4 h at 37°C in a water bath. NaOH was added to adjust the ph to 7.8. Trypsin 

was added at an enzyme/substrate ratio of 1:100 in 100 mM ammonium bicarbonate (pH 8) 

and the mixture was incubated for 4 h at 37°C. The reaction was stopped by heating (95°C, 

10 min). The mixture was centrifuged at 10000 g for 10 min. After centrifugation, the 
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supernatant was filter-sterilized (0.22 μm filter) and the protein concentration was adjusted to 

1.0 mg/ml with PBS using a Bradford assay according to the manufacturer‟s protocol (Roti-

Quant, Roth, Karlsruhe, Germany). PT-gluten was aliquoted and frozen at −80°C. 

 

 

3.13. Isolation of MLNs and splenocytes 
 

Mesenteric lymph nodes or spleens were dissected from mice and immediately stored in cold 

T-cell culture medium (RPMI 1640 medium (Invitrogen, Carlsbad, USA) supplemented with 

10% FBS (Biochrom, Berlin, Germany), 1% Antibiotic-Antimycotic (Invitrogen, Carlsbad, 

USA)) and mashed through a 100 µm cell strainer (BD Falcon). Mesenteric lymph node 

leukocytes (MLNs) or splenocytes were resuspended in 10 ml PBS and centrifuged at 350 g, 

5 min, 4°C. The pellet was washed with 10ml PBS, centrifuged, resuspended in 5 ml red 

blood cell lysis buffer (0.8% NH4Cl, 0.1% KHCO3, 0.0037% Na2EDTA*3H2O in H2O, pH 7.2) 

and incubated for 5min at RT. The reaction was stopped by adding 15 ml PBS. After filtering 

(70µm cell strainer) and centrifugation, the pellet was resuspended in 10 ml PBS. Cells were 

counted using a Neubauer counting chamber and prepared for flow cytometric analysis or 

used in cell culture experiments. 

 

 

3.14. Cell culture and stimulation 
 

Total MLNs were isolated from mesenteric lymph nodes and seeded at 2x106 cells/ml (100 

µl/well) in 96-well cell culture plates (Nunc, Roskilde, Denmark) in T-cell culture medium 

(RPMI 1640 (Invitrogen, Carlsbad, USA), 10% FBS (Biochrom, Berlin, Germany), 1% 

Antibiotic-Antimycotic (Invitrogen, Carlsbad, USA)). Cells were stimulated with Cecal lysates 

(CL), Dietary suspensions (DS) or peptic-tryptic digests of gluten (PT-gluten) at different 

concentrations (10 µg/ml, 50 µg/ml, 100 µg/ml) as indicated in the experiments. MLNs were 

cultured for 24 h in a humidified 5% CO2 atmosphere at 37°C. Cell culture plates were 

centrifuged at 350 g, 4°C, 5 min and supernatants were collected for subsequent ELISA 

analysis. 
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3.15. CD4+ T-cell isolation 
 

CD4+ T-cells were positively selected from MLN or splenocyte cell suspensions using FITC-

conjugated anti-CD4 antibodies (FITC Rat Anti-Mouse CD4, BD Pharmingen) and anti-FITC 

MicroBeads (Miltenyi Biotec, Bergisch Gladbach, Germany) in combination with magnetic 

cell separation columns (LS columns, Miltenyi Biotec, Bergisch Gladbach, Germany) 

according to the manufacturer‟s protocol. Briefly, cells were washed in staining buffer (HBSS, 

2% FBS), centrifuged at 350 g, 5 min, 4°C and resuspended in 100 µl staining buffer. 

Staining solution (50 µl staining buffer, 1 µl anti-CD4 antibody) was added and incubated at 

4°C, 20 min. Cells were washed, resuspended in 100 µl staining buffer and mixed with 300 µl 

MicroBeads solution (260 µl staining buffer + 40 µl anti-FITC MicroBeads). Cells were 

incubated for 10min on ice, washed and resuspended in 1ml staining buffer. Labeled CD4+ T-

cells were isolated by magnetic cell separation technology using LS Columns (Miltenyi 

Biotec, Bergisch Gladbach, Germany). The purity of isolated CD4+ T-cells was determined by 

flow cytometric analysis using the LSRII flow cytometer in combination with FACSDiva 

software (BD Bioscience) and was >90% in all experiments. 

 

 

3.16. Generation of BM-DCs 
 

DC from mouse bone marrow were generated as previously described [170]. Briefly, Wt mice 

(C57BL/6 background) were sacrificed by cervical dislocation.  Femurs and tibiae were 

removed and cleaned from muscle tissue. Bones were washed in PBS on ice and transferred 

to 70% EtOH for 3 min at sterile conditions. Bones were washed in sterile PBS and cut at 

each end with sterile scissors. The bone marrow was flushed through a cell strainer (50 µm) 

into a 50 ml tube using a syringe (27G needle) and sterile PBS. Cells were pelleted at 350 g, 

4°C, 5 min and resuspended in 10 ml PBS. Cells were counted using a Neubauer counting 

chamber, washed and seeded in petri dishes at 0.2x106 cells/ml in10 ml BM-DC culture 

medium (RPMI 1640 (Invitrogen, Carlsbad, USA), 10% FBS (Biochrom, Berlin, Germany), 

50µM 2-mercaptoethanol (Invitrogen, Carlsbad, USA), 1% Antibiotic-Antimycotic (Invitrogen, 

Carlsbad, USA), 1% glutamine (Invitrogen, Carlsbad, USA), 15 ng/ml GM-CSF (PeproTech, 

Offenbach, Germany), 15 ng/ml IL-4 (PeproTech, Offenbach, Germany)). Cells were cultured 

in a humidified 5% CO2 atmosphere at 37°C. At day three, 10 ml of BM-DC culture medium 

was added. At day six, eight and ten, 50% of the cell suspension was removed, centrifuged 

(350g, 5 min), resuspended in fresh BM-DC culture medium of same volume and given back 

in culture. BM-DCs were collected between day ten and twelve, when CD11b+ CD11c+ 
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double positive cells were > 90% as assessed by flow cytometry using the LSRII flow 

cytometer in combination with FACSDiva software (BD Bioscience). 

 

 

3.17. Coculture of BM-DCs and CD4+ T-cells 
 

BM-DCs were seeded at 0.1x106 cells/ml (100 µl/well) in 96-well cell culture plates (Nunc, 

Roskilde, Denmark) in coculture medium (RPMI 1640 (Invitrogen, Carlsbad, USA), 10% FBS 

(Biochrom, Berlin, Germany), 50µM 2-mercaptoethanol (Invitrogen, Carlsbad, USA), 1% 

Antibiotic-Antimycotic (Invitrogen, Carlsbad, USA), 1% glutamine (Invitrogen, Carlsbad, 

USA), 15 ng/ml GM-CSF (PeproTech, Offenbach, Germany)). BM-DCs were pulsed by 

adding 50 or 100 µg/ml of cecal lysates, dietary suspensions or PT-gluten as indicated in the 

experiments. In MHCII blocking experiments, 12 µg/ml or 25 µg/ml of anti-MHCII blocking 

antibody (BD Pharmingen) was added together with the antigens. BM-DCs were incubated 

for 6 h in a humidified 5% CO2 atmosphere at 37°C. Cells were washed twice with PBS and 

isolated CD4+ T-cells from mesenteric lymph nodes of TNFΔARE/WT mice were added at 2x106 

cells/ml (100 µl/well). BM-DCs and CD4+ T-cells were cocultured for 72 h in a humidified 5% 

CO2 atmosphere at 37°C. BM-DCs and CD4+ T-cells that were cultured alone served as a 

control. Cell culture plates were centrifuged at 350 g, 4°C, 5 min and supernatants were 

collected for subsequent ELISA analysis. 

 

3.18. ELISA 
 

Cytokine protein concentrations of TNF, IFN-γ and IL-12p40 in supernatants of cell culture 

and coculture experiments were determined by mouse-specific ELISA kits according to the 

manufacturer's instructions (Ready-Set-Go! ELISA kits, eBioscience, San Diego, CA). Briefly, 

NuncMaxiSorp flat-bottom 96 well plates (Greiner Bio-One GmbH, Frickenhausen, Germany) 

were coated with the appropriate capture antibody overnight at RT. Plates were washed, 

blocked and incubated with cell culture supernatants for 1.5 h at RT. Plates were washed 

and incubated with the appropriate detection antibody for 1.5 h at RT. Plates were washed 

and incubated with a detection enzyme. Plates were washed and incubated with a substrate 

solution. Protein concentration was determined by photometrical analysis of the reaction of 

substrate and detection enzyme.  
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3.19. Statistical analysis 
 

Statistical analysis was performed using SigmaPlot 11.0 (Systat Software). Data comparing 

two groups were analyzed using the unpaired t test. Data comparing more than two groups 

were analyzed using One-Way or Two-Way ANOVA followed by an appropriate multiple 

comparison procedure. Differences between groups were considered significant if P values 

were < 0.05. 
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4. RESULTS 

4.1. Effects of dietary intervention on Crohn‟s disease-like ileitis 

4.1.1. Semi-synthetic diet ameliorates ileitis in TNFΔARE/WT mice 

 

Genetically susceptible TNFΔARE/WT mice being kept under conventional conditions on 

standard Chow diet developed a severe chronic intestinal inflammation in the distal ileum 

after 18 weeks of age. In contrast, TNFΔARE/WT mice being transferred to a semi-synthetic, 

experimental diet (Exp) showed no or only mild symptoms of inflammation (P < 0.001). The 

observed protective effect was not specific for one diet manufacturing company and could be 

reproduced using semi-synthetic diet of an alternative manufacturer. Neither Chow diet nor 

experimental diet induced any signs of tissue pathology in wild type (WT) mice (Figure 1). 

 

 

Figure 1. Tissue pathology of WT and TNF
ΔARE/WT

 mice on Chow diet and experimental diet.  

Tissue pathology assessed by histological examination (score 0-12) of distal ileal sections from WT and 

TNFΔARE/WT (ARE) mice (18 weeks of age) on standard Chow diet (manufacturer Ssniff) and experimental diet 

(Exp) (manufacturer Ssniff or Altromin, as indicated). Values are means ± SD, n = 6 per group. 
a,b,c

 Within each 

graph, means without a common letter differ, P < 0.001.  

 

WT mice had significantly (P < 0.05) higher body weights compared to TNFΔARE/WT mice and 

showed no differences according to diet. Inflamed TNFΔARE/WT mice on Chow did not differ 

from the non-inflamed Exp group (Figure 2A). 

The reversed pattern could be observed, when we compared spleen weights of the distinct 

trial groups. TNFΔARE/WT mice showed significantly (P < 0.001) increased spleen weights 

compared with WT mice. Interestingly, although TNFΔARE/WT mice on Exp showed only very 
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mild tissue pathology, spleen weights were not different from highly inflamed TNFΔARE/WT mice 

(Figure 2B). 

We observed strong differences in cecum size and weight depending on genotype and diet. 

Inflamed TNFΔARE/WT mice on Chow showed highest cecum weights (P < 0.001), followed by 

WT on Chow and TNFΔARE/WT mice on Exp. WT mice on Exp revealed the lowest cecum 

weights. A strong diet dependent effect could be observed in the WT and TNFΔARE/WT group. 

Animals on Chow showed significantly increased cecum weights compared to animals on 

Exp of the same group. Interestingly, cecum weights of protected TNFΔARE/WT mice on Exp 

were comparable with those of WT mice (Figure 2C). 

 

Mesenteric lymph nodes (MLN) play a pivotal role in mucosal immune responses. Therefore, 

we were also interested in MLN weights and associations with genotype and diet. Inflamed 

TNFΔARE/WT mice on Chow showed significantly increased MLN weights compared with the 

WT Chow and ARE Exp group. TNFΔARE/WT mice on Exp showed a higher variance in MLN 

weight but ranked between highly inflamed TNFΔARE/WT and completely healthy WT mice (P < 

0.001). No differences could be seen, comparing WT mice on Chow and Exp diet (Figure 

2D). 

 

 

Figure 2. Body and organ weights of WT and TNF
ΔARE/WT

 mice. 

Body weight, spleen weight, cecum weight and mesenteric lymph node (MLN) weight of WT and TNFΔARE/WT 

mice on Chow and experimental diet (Exp), sacrificed after 18 weeks of age by cervical dislocation. Values are 
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means ± SD, n = 6 per group. 
a,b,c

 Within each graph, means without a common letter differ, P < 0.05 and P < 

0.001 for (A) and (B, C, D), respectively. 

 

We next wanted to evaluate whether the differences in splenocyte and MLN weights could be 

confirmed at total cell numbers. Splenocytes and MLNs were isolated and counted using a 

Neubauer counting chamber. Although TNFΔARE/WT mice on Chow and Exp had different 

inflammatory conditions as shown above, total splenocyte numbers were not different. The 

WT Chow and WT Exp group did also not differ in total splenocytes. Though, both ARE 

groups showed significantly (P < 0.05) increased cell numbers, compared with the WT 

groups, independently of the diet (Figure 3A). 

Inflamed TNFΔARE/WT mice on Chow showed highest (P < 0.001) total MLN leukocyte 

numbers. The ARE Exp group counted significantly (P < 0.001) less but significantly (P < 

0.001) more total cells than the ARE Chow and both WT groups, respectively. No difference 

was found comparing WT mice on different diets (Figure 3B). 

 

 

Figure 3. Leukocyte counts in spleens and mesenteric lymph nodes. 

Total leukocyte numbers of (A) spleens and (B) MLNs from WT and TNFΔARE/WT mice on Chow diet and 

experimental diet (Exp). Values are means ± SD, n = 6 per group. 
a,b,c

 Within each graph, means without a 

common letter differ, P < 0.05 and P < 0.001 for (A) and (B), respectively. 
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4.1.2. Quantitative real-time PCR analysis of TNFΔARE/WT and WT mice 

 

TNFΔARE/WT mice that develop a chronic ileitis show strongest disease manifestation in the 

distal ileum. We therefore assessed the level of proinflammatory gene expression in affected 

tissue regions. Cytokine expression in the distal ileum was measured by qRT-PCR and 

revealed significantly (P < 0.001) elevated levels of pro-inflammatory cytokines TNF and IFN-

y in TNFΔARE/WT mice on Chow diet. Cytokine expression in TNFΔARE/WT mice on experimental 

diet did not differ from WT mice, suggesting that pathogenesis of Crohn‟s disease-like ileitis 

was inhibited by the experimental diets (Figure 4). 

 

Figure 4. Quantitative real-time PCR analysis of proinflammatory cytokines. 

Relative mRNA expression of TNF and IFN-y in distal ileal tissue from WT and TNFΔARE/WT mice on Chow diet 

and experimental diet (Exp). Tumor necrosis factor (TNF); interferon-y (IFN-y). Values are means ± SD, n = 6 per 

group. 
a,b,c

 Within each graph, means without a common letter differ, P < 0.001. 

 

The expression of pattern recognition receptors TLR-2 and TLR-4 as well as LBP was highly 

elevated in distal ileal tissues of inflamed TNFΔARE/WT mice on Chow diet (P < 0.05), whereas 

mice on experimental diet did not show increased expression compared to WT mice. 

Interestingly, expression of TLR-2, TLR-4 and LBP was also increased in WT mice on Chow 

diet compared with WT mice on experimental diet, although no tissue pathology could be 

detected. In contrast, flagellin related TLR-5 showed no regulation under any condition 

(Figure 5).  
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Figure 5. Quantitative real-time PCR analysis of pattern recognition receptors. 

Relative mRNA expression of pattern recognition receptors in distal ileal tissue from WT and TNFΔARE/WT mice 

on Chow diet and experimental diet (Exp). Toll like receptor 2 (TLR-2); toll like receptor 4 (TLR-4); toll like 

receptor 5 (TLR-5); LPS binding protein (LBP). Values are means ± SD, n = 6 per group. 
a,b,c

 Within each graph, 

means without a common letter differ, P < 0.001.  

 

 

TLR-9 and NOD-2 recognize CpG rich motifs in bacterial or viral DNA and muramyl dipeptide 

(MDP) moieties of peptidoglycan, respectively. Both are expressed intracellularly and play a 

crucial role in immune activation and are associated with autoimmune inflammatory 

disorders. 

The inflamed ARE Chow group showed increased (P < 0.01) expression of TLR-9 and NOD-

2, whereas  TNFΔARE/WT mice on experimental diet showed no difference in mRNA expression 

compared with WT mice on Chow or experimental diet (Figure 6). 
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Figure 6. Quantitative real-time PCR analysis of pattern recognition receptors. 

Relative mRNA expression of pattern recognition receptors in distal ileal tissue from WT and TNFΔARE/WT mice 

on Chow diet and experimental diet (Exp). Toll like receptor 9 (TLR-9); Nucleotide-binding oligomerization 

domain-containing protein 2 (NOD-2). Values are means ± SD, n = 6 per group. 
a,b,c

 Within each graph, means 

without a common letter differ, P < 0.01. 

 

 

Infiltration of leukocytes into sites of inflammation is a pivotal step in Crohn‟s disease-like 

ileitis. IP-10 has been attributed to several roles, such as chemoattraction of antigen 

presenting cells (APCs) and promotion of T-cell adhesion to endothelial cells. The cell 

adhesion molecules MAdCAM-1 and ICAM-1 are also important factors for leukocyte 

recruitment and extravasation in inflamed tissues. 

Distal ileal sections of inflamed TNFΔARE/WT mice on Chow showed significantly (P < 0.01) 

increased expression of IP-10, MAdCAM-1 and ICAM-1 compared to all other groups. WT 

Chow, WT Exp and ARE Exp groups had similar mRNA expression levels, suggesting that 

tissue activation had not taken place in TNFΔARE/WT mice on experimental diet (Figure 7). 
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Figure 7. Quantitative real-time PCR analysis of cell adhesion molecules and IP-10. 

Relative mRNA expression of cell adhesion molecules MAdCAM-1 and ICAM-1 and proinflammatory chemokine 

IP-10 in distal ileal tissue from WT and TNFΔARE/WT mice on Chow diet and experimental diet (Exp). Mucosal 

vascular addressin cell adhesion molecule 1 (MAdCAM-1); intercellular adhesion molecule 1 (ICAM-1). Values 

are means ± SD, n = 6 per group. 
a,b,c

 Within each graph, means without a common letter differ, P < 0.01. 

 

 

4.1.3. Cellular analysis of TNFΔARE/WT and WT mice 

 

Leukocyte infiltration in distal ileal tissues of TNFΔARE/WT mice was visualized by 

immunohistochemical labeling of CD3+ T-cells. Distal ileal sections of TNFΔARE/WT mice on 

Chow diet showed increased infiltration of CD3+ T-cells and impaired intestinal architecture 

as compared with TNFΔARE/WT mice on experimental diet (Figure 8). 
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Figure 8. Fluorescence microscopy of distal ileal tissues from TNF
ΔARE/WT 

mice. 

Representative H&E staining (upper panels) and immunohistochemical labeling (CD3+ T-cells) of distal ileal 

sections from inflamed and non-inflamed TNFΔARE/WT mice (18 weeks of age) on Chow diet (left column) and 

experimental diet (right column). Fluorescence microscopy is visualized by phase contrast, fluorescence and 

merged images as indicated (100x magnification). 
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We determined total ileal leukocyte cell numbers after isolation from ileal tissue by density 

gradient centrifugation. Inflamed TNFΔARE/WT mice on Chow showed significantly (P < 0.001) 

higher leukocyte numbers compared with all other groups. TNFΔARE/WT mice on Exp revealed 

a non significant trend for elevated leukocyte numbers compared with the WT groups. 

Dietary intervention had no effects on total cell numbers in WT mice (Figure 9). 

 

 

Figure 9. Leukocyte counts in ileal tissues of WT and TNF
ΔARE/WT 

mice. 

Total leukocyte numbers in ileal tissues from WT and TNFΔARE/WT mice on Chow diet and experimental diet 

(Exp) were determined using a Neubauer counting chamber after density gradient centrifugation. Values are 

means ± SD, n = 5-6 per group. 
a,b,c

 means without a common letter differ, P < 0.001.  

 

 

Infiltrating lamina propria lymphocyte (LPL) and intraepithelial lymphocyte (IEL) populations 

were further characterized by flow cytometric analysis. CD8αβ+ T-cells are suggested to be a 

major effector T-cell population in the TNFΔARE/WT mouse model. CD8αα+ T-cells represented 

the dominant phenotype in the ileum of WT mice, whereas TNFΔARE/WT mice showed a 

significant (P < 0.01) increase of CD8αβ+ T-cells associated with a significant decrease of 

CD8αα+ T-cells (P < 0.01), irrespective of the different diets (Figure 10). 
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Figure 10. Flow cytometric analysis of IEL and LPL in WT and TNF
ΔARE/WT 

mice. 

Flow cytometric analysis of CD8αα+ and CD8αβ+ subpopulations of CD8+ IEL and LPL from ileal tissues of WT 

and TNFΔARE/WT mice on Chow diet and experimental diet (Exp). Values are means ± SD, n = 4-6 per group. 

a,b,c
 means without a common letter differ, P < 0.01. Intraepithelial lymphocytes (IEL); lamina propria lymphocytes 

(LPL). 

 

 

Regulatory T-cells (Tregs) play a crucial role in immune homeostasis and regulation of 

inflammatory responses. To assess the role of Tregs in the distinct treatment groups, we 

analyzed IEL/LPL fractions for CD4+ Foxp3+ Tregs. There was no difference between the 

inflamed ARE Chow group and the non-inflamed ARE Exp group. Both ARE groups showed 

a trend to have higher proportions of Tregs compared to the WT Chow group, but values did 

not reach significance. WT mice on Exp had significantly (P < 0.01) less Tregs than both 

ARE groups but did not differ from WT mice on Chow (Figure 11). 
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Figure 11. Flow cytometric analysis of IEL and LPL in WT and TNF
ΔARE/WT 

mice. 

Flow cytometric analysis of CD4+ Foxp3+ subpopulations of CD4+ IEL and LPL from ileal tissues of WT and 

TNFΔARE/WT mice on Chow diet and experimental diet (Exp). Values are means ± SD, n = 4-6 per group. 

a,b,c
 means without a common letter differ, P < 0.01. Intraepithelial lymphocytes (IEL); lamina propria lymphocytes 

(LPL); forkhead box P3 (Foxp3). 

 

We measured significant differences in MLN weights from WT and TNFΔARE/WT mice with 

dietary effects in the latter group. Next we wanted to investigate, whether these changes 

were associated with alterations of T-cell phenotypes. 

Flow cytometric analysis of total mesenteric lymph node cells revealed no difference in 

CD4+/CD8+ T-cell ratios comparing WT and ARE groups. Although a significant difference in 

MLN weights was observed, no phenotypical difference could be detected in T-cell 

populations of TNFΔARE/WT mice on different diets (Figure 12). 

 

  
Figure 12. Flow cytometric analysis of MLNs from WT and TNF

ΔARE/WT 
mice. 

Flow cytometric analysis of (A) CD4+ and (B) CD8+ T-cell populations of total mesenteric lymph node leukocytes 

(MLNs) from WT and TNFΔARE/WT mice on Chow diet and experimental diet (Exp). Values are means ± SD, n = 

4-6 per group. 
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4.1.4. Time-dependent effects of dietary intervention 

 

We next aimed at characterizing the protective effect of the experimental diet in a time-

dependent manner. Figure 13 represents a schematic illustration of the feeding experiment. 

TNFΔARE/WT mice being transferred to an experimental diet with seven weeks of age did not 

develop pathology (P < 0.001). In contrast, dietary transfer in week 10 or 14 of age did not 

inhibit the development of full intestinal inflammation after 18 weeks of age compared with 

TNFΔARE/WT mice on Chow diet ad libitum. These results suggest a small time frame between 

weeks seven and ten for effective dietary prevention of ileitis in TNFΔARE/WT mice (Figure 13). 

 

 

 

Figure 13. Tissue pathology of TNF
ΔARE/WT

 mice after time-dependent transfer to experimental diet. 

Tissue pathology assessed by histological examination (score 0-12) of distal ileal sections from TNFΔARE/WT 

mice on different diets as indicated. TNFΔARE/WT mice were transferred from Chow diet to experimental diet at 

7, 10 or 14 weeks of age as indicated. Mice were sacrificed at 18 weeks of age. Upper graphic, schematic 

representation of the feeding experiment. Values are means ± SD, n = 6 per group. 
a,b

 means without a common 

letter differ, P < 0.001. 
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4.1.5. Rapid development of chronic intestinal inflammation in TNFΔARE/WT mice 

 

We performed another feeding experiment to analyze the kinetics of disease development. 

TNFΔARE/WT mice were kept on experimental diet until week 12 of age. Animals were then 

transferred to Chow diet for two or six weeks.  

After two weeks on Chow diet, TNFΔARE/WT mice showed a significant (P < 0.01) increase in 

histopathology. Animal housing on Chow diet for six weeks resulted in severe ileitis with low 

standard deviation (Figure 14). 

 

 

 

 

Figure 14. Tissue pathology of TNF
ΔARE/WT

 mice after transfer to Chow diet. 

Tissue pathology assessed by histological examination (score 0-12) of distal ileal sections from TNFΔARE/WT 

mice on different diets as indicated. TNFΔARE/WT mice were transferred from experimental diet to Chow diet at 7 

or 12 weeks of age. Mice were kept on the different diets for 2, 6, or 11 weeks, as indicated in bracket. Upper 

graphic, schematic representation of the feeding experiment with endpoints after 14 (II) or 18 weeks of age (I, III, 

IV). Values are means ± SD, n = 3-6 per group. 
a,b

 means without a common letter differ, P < 0.01. 
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4.1.6. Low concentrations of Chow diet induce chronic ileitis in TNFΔARE/WT mice 

 

In order to characterize disease pathogenesis of TNFΔARE/WT mice on Chow diet, we designed 

a Chow titration experiment. Customized diets differing in Chow content were prepared and 

fed ad libitum. 

Tissue pathology assessed by histological examination (score 0-12) of distal ileal sections 

revealed moderate inflammation (score 3.17 ± 0.85) in TNFΔARE/WT mice being fed 1% Chow 

diet. Experimental diets with a Chow content of 10%, 30% or 70% induced strong ileal 

inflammation and showed no difference compared to 100% Chow diet. TNFΔARE/WT mice on 

pure experimental diet showed very mild tissue pathology (Figure 15A). We apportioned the 

mean histological scores according to infiltration of leukocytes into mucosa, submucosa and 

muscularis as well as condition of intestinal architecture. There was a steady increase of 

scores in all categories, starting lowest in the Exp group, increasing in the 1% Chow group 

and reaching its maximum in the 10% Chow group with no difference to 30%, 70% and 100% 

Chow groups. Scoring criteria that differed the most from the Exp group were infiltration of 

leukocytes into the muscularis and destruction of intestinal architecture via crypt loss and 

villous atrophy (Figure 15B). Increase of pathology is visualized by representative H&E 

staining (Figure15C). 
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30% Chow 70% Chow 100% Chow 

   

 

Figure 15. Tissue pathology of TNF
ΔARE/WT

 mice being kept on diets with increasing Chow content. 

(A) Tissue pathology assessed by histological examination (score 0-12) of distal ileal sections from TNFΔARE/WT 

mice on experimental diet, 1%, 10%, 30%, 70% and 100% Chow. (B) Apportioned mean histological scores 

according to leukocyte infiltration into mucosa, submucosa, muscularis and appearance of intestinal architecture. 

(C) Representative H&E staining of distal ileal sections from TNFΔARE/WT mice (18 weeks of age) on diets as 

indicated (100x magnification). Values are means ± SD, n = 6 per group. 
a,b

 means without a common letter differ, 

P < 0.001. 
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4.1.7. Particle size distribution measurements 

 

Standard Chow diet seemed to have a coarse-grained appearance with higher variations in 

particle size compared with the homogenous grain structure of the experimental diet. 

Inflammatory responses might be triggered by shear forces of non-digested coarse-grained 

particles that might induce mechanic stress on distal ileal tissue, where the intestine forms a 

bottleneck before entering the cecum. To confirm our macroscopical observations of different 

diet structures, we performed a particle size distribution measurement by laser diffraction 

analysis. 

The mean particle size of Chow was significantly (P < 0.001) bigger, than the mean particle 

size of the experimental diet. Thus, we ordered a modified Chow diet with increased grinding 

state (Chow fine). Particle size distribution measurement revealed that the mean particle size 

was significantly decreased compared with standard Chow diet, although it was still more 

coarse-grained (P < 0.001) than the experimental diet (Figure 16).  

 

 

Figure 16. Laser diffraction analysis of experimental (Exp), fine Chow and standard Chow diet. 

(A) Volume-based mean diameter size of particles, calculated upon equivalent sphere theory [D(4,3)]. (B) Mean 

particle size distribution diagram after wet analysis. Values are means ± SD of three independent experiments. 

a,b,c
 means without a common letter differ, P < 0.001.  

 

We next measured the particle size of ileal and cecal contents in TNFΔARE/WT mice on Exp, 

Chow fine and standard Chow diets to analyze the effect of dietary graining state on luminal 

content. Ileal contents of the Chow groups showed no difference in particle size, suggesting 

that standard Chow diet had been comminuted and digested to the size of Chow fine diet. 

Interestingly, particle sizes of Chow fine and Exp diets were not further decreased during 

digestion (289 ± 18 µm and 121 ± 9 µm, respectively) and had approximately the same 

values as the original diets (263 ± 13 µm and 125 ± 6 µm, respectively). A significant (P < 

0.001) difference in particle size was still visible, comparing ileal contents of Exp with each of 

the Chow groups (Figure 17). 
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Figure 17. Laser diffraction analysis of ileal contents from TNF
ΔARE/WT 

mice being kept on experimental 

(Exp), fine Chow and standard Chow diet. 

(A) Volume-based mean diameter size of particles, calculated upon equivalent sphere theory [D(4,3)]. (B) Mean 

particle size distribution diagram after wet analysis. Values are means ± SD, n = 5 per group. 
a,b,c

 means without a 

common letter differ, P < 0.001. 

 

Particle size determination of cecal contents showed the same pattern as observed in ileal 

content analysis. There was no difference in cecal content particle size distribution of the 

Chow fine and standard Chow group. Yet, each of these groups significantly (P < 0.001) 

differed from the Exp group (Figure 18). These findings corroborated our results from ileal 

content measurements. 

 

Figure 18. Laser diffraction analysis of cecal contents from TNF
ΔARE/WT 

mice being kept on experimental 

(Exp), fine Chow and standard Chow diet. 

(A) Volume-based mean diameter size of particles, calculated upon equivalent sphere theory [D(4,3)]. (B) Mean 

particle size distribution diagram after wet analysis. Values are means ± SD, n = 5 per group. 
a,b,c

 means without a 

common letter differ, P < 0.001. 

 

We analyzed grinding state associated effects on pathology development using histological 

scoring after 18 weeks of age. The increased grinding state of Chow fine diet had no effects 

on chronic ileitis compared with coarse-grained standard Chow diet (Figure 19).  
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Figure 19. Tissue pathology of TNF
ΔARE/WT

 mice being kept on experimental (Exp), fine Chow and standard 

Chow diet. 

Tissue pathology assessed by histological examination (score 0-12) of distal ileal sections from TNFΔARE/WT 

mice on different diets as indicated. Values are means ± SD, n = 6 per group. 
a,b

 means without a common letter 

differ, P < 0.001. 

 

 

4.1.8. Fourier transform infrared spectroscopy (FT-IR) analysis 

 

We prepared bacterial suspensions of cecal content from TNFΔARE/WT mice on Chow diet 

(Chow) and experimental diet (Exp) to evaluate possible alterations in the cecal microbial 

composition by Fourier transform infrared spectroscopy (FT-IR). 

Figure 20 shows the dendrogram, generated by average linkage algorithm for cluster 

analysis of vector normalized first derivatives of total range FT-IR absorption spectra (4000 – 

600 cm -1). Cecal bacterial samples showed a clear cluster formation according to the 

different diets used in the feeding experiment. Exp samples were related closely to each 

other and exhibited increased spectral distance to cecal bacterial samples derived from the 

Chow group. “Chow a” showed least spectral relation to all other groups, even regarding the 

Chow group itself. 
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Figure 20. FT-IR analysis of cecal bacterial suspensions from TNF
ΔARE/WT

 mice being kept on experimental 

diet (Exp) and Chow diet (4000 – 600 cm 
-1

). 

Dendrogram, generated by average linkage algorithm for cluster analysis of vector normalized first derivatives of 

total range FT-IR absorption spectra (4000 – 600 cm 
-1

). Cecal bacterial suspensions of three (a, b, c) female 

TNFΔARE/WT mice per group (Chow and Exp) were prepared and measured in duplicates. 

 

To analyze the observed cluster formation of cecal bacterial samples in more detail, we 

focused on macronutrient specific regions. Strong cluster formation according to dietary 

treatment was observed in the carbohydrate specific region (1240-900 cm -1). Cecal bacterial 

samples of experimental diet exhibited close internal spectral distance and clearly separated 

from cecal bacterial samples of the Chow feeding (Figure 21A). The associated absorption 

spectra showed a clear difference in the fingerprint region (~ 1000 cm -1), probably 

responsible for the strong clustering (Figure 21B).  
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Figure 21. FT-IR analysis of cecal bacterial suspensions from TNF
ΔARE/WT

 mice being kept on experimental 

diet (Exp) and Chow diet (1240-900 cm 
-1

). 

(A) Dendrogram, generated by average linkage algorithm for cluster analysis of vector normalized first derivatives 

of carbohydrate specific FT-IR absorption spectra (1240-900 cm 
-1

). Cecal bacterial suspensions of three (a, b, c) 

female TNFΔARE/WT mice per group (Chow and Exp) were prepared and measured in duplicates. (B) Vector 

normalized first derivatives of carbohydrate specific FT-IR absorption spectra (1240-900 cm 
-1

). Black (Chow), 

green (Exp).   
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No clear cluster formation according to dietary treatment could be found in the protein 

specific region (1720 – 1480 cm -1) (Figure 22).  

 

 

Figure 22. FT-IR analysis of cecal bacterial suspensions from TNF
ΔARE/WT

 mice being kept on experimental 

diet (Exp) and Chow diet (1720-1480 cm 
-1

).  

(A) Dendrogram, generated by average linkage algorithm for cluster analysis of vector normalized first derivatives 

of protein specific FT-IR absorption spectra (1720-1480 cm 
-1

). Cecal bacterial suspensions of three (a, b, c) 

female TNFΔARE/WT mice per group (Chow and Exp) were prepared and measured in duplicates. (B) Vector 

normalized first derivatives of protein specific FT-IR absorption spectra (1720-1480 cm 
-1

). Black (Chow), green 

(Exp).   
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The lipid specific region ranges from 3000 - 2780 cm -1. No clear cluster formation according 

to dietary treatment could be observed in this region (Figure 23). 

 

 

Figure 23. FT-IR analysis of cecal bacterial suspensions from TNF
ΔARE/WT

 mice being kept on experimental 

diet (Exp) and Chow diet (3000-2780 cm 
-1

).  

(A) Dendrogram, generated by average linkage algorithm for cluster analysis of vector normalized first derivatives 

of lipid specific FT-IR absorption spectra (3000-2780 cm 
-1

). Cecal bacterial suspensions of three (a, b, c) female 

TNFΔARE/WT mice per group (Chow and Exp) were prepared and measured in duplicates. (B) Vector normalized 

first derivatives of lipid specific FT-IR absorption spectra (3000-2780 cm 1). Black (Chow), green (Exp).   
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4.1.9. Antigenicity of cecal lysates is not altered by experimental diet 

 

The commensal microbiota is suggested to play a pivotal role in the development of Crohn‟s 

disease-like ileitis of TNFΔARE/WT mice [7]. Experimental diet might have an impact on the 

commensal bacterial composition compared to the microbiota of mice on Chow diet, thus 

leading to dysbiosis and an altered immune response. 

We tested the antigenicity of cecal lysates originating from cecal content of WT and 

TNFΔARE/WT mice on Chow and experimental diet. Therefore, BM-DCs were cultured and 

differentiated in vitro and stimulated with 10 ug/ml and 100 ug/ml of cecal lysates. 

Cecal lysate mediated activation of BM-DCs triggered a dose dependent secretion of TNF (P 

< 0.001). But no difference could be observed regarding the type of cecal lysate (Figure 

24A). BM-DCs were differentiated in vitro and therefore had not experienced any tolerance 

or priming mechanisms which might be important for a differentiated response. Thus, we 

isolated total mesenteric lymph node cells (MLNs) from WT and TNFΔARE/WT mice on Chow 

diet and experimental diet for cecal lysate stimulation. 

MLNs from TNFΔARE/WT mice showed significantly (P < 0.001) higher TNF secretion after cecal 

lysate stimulation compared with MLNs from WT mice, irrespective of the diet. Though, no 

difference in stimulation capacity could be observed regarding the type of cecal lysate 

(Figure 24B). 
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Figure 24. Cell culture analysis of cecal lysates (CL) prepared from WT and TNF
ΔARE/WT

 mice being kept on 

experimental diet (Exp) and Chow diet. 

Concentration of TNF in cell culture supernatants, measured by ELISA. (A) Bone marrow derived dendritic cells 

(BM-DCs) were cultured in vitro for 10-12 days until CD11b+ CD11c+ cells were > 95%. BM-DCs were stimulated 

with 10 ug/ml or 100 ug/ml cecal lysate from WT (CL-WT) or TNFΔARE/WT mice (CL-ARE) on Chow diet or 

experimental diet, as indicated, for 24 h.  (B) Mesenteric lymph node cells from WT (MLN-WT) and TNFΔARE/WT 

(MLN-ARE) mice on Chow diet (Chow) and experimental diet (Exp) were stimulated with 100 ug/ml cecal lysate, 

as indicated, for 24 h.  Values are means ± SD of three independent experiments. 
a,b,c

 means without a common 

letter differ, P < 0.001. 
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T-cell specific responses were analyzed using a coculture system of isolated CD4+ T-cells 

and BM-DCs which were pulsed with the appropriate cecal lysates. CD4+ T-cells from 

TNFΔARE/WT mice showed significantly higher IFN-y secretion compared with WT mice (P < 

0.05). No difference regarding the type of cecal lysate could be detected (Figure 25A). 

A dose-dependent inhibition (P < 0.001) of IFN-y secretion could be achieved by using an 

anti-MHCII blocking antibody. CD4+ T-cells and BM-DCs alone did not respond to cecal 

lysate stimulation, suggesting that IFN-y secretion was dependent on MHCII:peptide complex 

presentation (Figure 25B). MHCII blocking had no effect on BM-DC activity as shown by 

secretion of IL-12 (Figure 25C). 
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Figure 25. Coculture analysis of cecal lysates (CL) prepared from WT and TNF
ΔARE/WT

 mice being kept on 

experimental diet (Exp) and Chow diet. 

Concentration of IFN-y in coculture supernatants, measured by ELISA. (A) Bone marrow derived dendritic cells 

(BM-DCs) were pulsed with cecal lysates from WT (CL-WT) or TNFΔARE/WT mice (CL-ARE) on Chow diet 

(Chow) and experimental diet (Exp) for 6 h. CD4+ T-cells were isolated from mesenteric lymph nodes of WT and 

TNFΔARE/WT mice on Chow diet and experimental diet. BM-DCs and CD4+ T-cells were cocultured in 96-well 

plates for 72 h. (B) Coculture blocking experiment. Antigen presentation of cecal lysate (50 ug/ml or 100 ug/ml) 

pulsed BM-DCs was blocked, using 12 ug/ml or 25 ug/ml of anti-MHCII blocking antibody. BM-DCs and CD4+ T-

cells were cocultured for 72 h. (C) Coculture blocking experiment. Determination of IL-12p40 in coculture 

supernatants after 72 h. In each experiment, keyhole limpet hemocyanin (KLH, 100 ug/ml) was used as a 

negative control. Values are means ± SD of three independent experiments. 
a,b,c,d

 means without a common letter 

differ, P < 0.001. 
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4.1.10. Chow suspensions have immunogenic potential  

 

TNFΔARE/WT mice being kept on autoclaved Chow diet under specific pathogen free (SPF) 

conditions showed scattered disease pathogenesis after 18 weeks of age, ranging from non-

inflamed over moderately inflamed to highly inflamed distal ileal tissues (unpublished data of 

E. Berger and I. Sava, data not shown). Apart from airborne germs, diet-resident bacteria 

might have an effect on disease development in TNFΔARE/WT mice. 

We compared the endotoxin content of experimental and Chow diet and observed highly 

increased (P < 0.001) amounts of endotoxin in the Chow diet, whereas almost no endotoxins 

could be measured in the experimental diet (Figure 26). These data suggest microbial 

contamination of Chow and very low bacterial burden in the experimental diet.  

 

Figure 26. Endotoxin content in experimental diet (Exp) and Chow diet.  

Endotoxin unit (EU). Values are means ± SD of three independent experiments. 
a,b

 means without a common 

letter differ, P < 0.001. 

 

To investigate possible effects of live bacteria and microbial compounds in the diet, we 

prepared dietary suspensions from Chow (DS Chow), autoclaved Chow (DS Chow (A)) and 

experimental diet (DS Exp). Culture of DS Chow on unspecific blood agar plates for 24 hours 

resulted in dense colony formation, whereas DS Exp developed only sporadic or no colonies. 

No colonies could be detected after culture of DS Chow (A) (data not shown). 

Immunostimulatory properties of dietary suspensions were evaluated by total MLN culture. 

DS Chow significantly (P < 0.001) induced cytokine secretion, whereas DS Exp had no 

significant effect on TNF secretion. The DS Chow (A) group showed significantly less (P < 

0.001) TNF secretion compared with the standard Chow group, but still more (P < 0.001) 

TNF secretion than unstimulated controls. The difference in supply of diet (Chow vs Exp) 

during animal housing of TNFΔARE/WT mice had no influence on TNF secretion by total MLNs 

(Figure 27A). 
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Accordingly, CD4+ T-cells from TNFΔARE/WT mice on Chow and experimental diet showed 

significantly (P < 0.001) increased IFN-y secretion  in coculture experiments using DS Chow 

pulsed BM-DCs compared to DS Exp and DS Chow (A) pulsed BM-DCs. (Figure 27B). 

 

 

Figure 27. Cell culture analysis of dietary suspensions (DS) from experimental diet (DS Exp), Chow diet 

(DS Chow) and autoclaved Chow diet (DS Chow (A)). 

Concentration of TNF and IFN-y in cell culture supernatants, measured by ELISA. (A) Concentration of TNF in 

cell culture supernatants. Mesenteric lymph node cells from TNFΔARE/WT mice (MLN-ARE) on Chow diet 

(Chow) and experimental diet (Exp) were stimulated with dietary suspensions of Chow diet (DS Chow, 100 ug/ml) 
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autoclaved Chow diet (DS Chow (A), 100 ug/ml) or experimental diet (DS Exp, 100 ug/ml) for 24 h. (B) 

Concentration of IFN-y in coculture supernatants, measured by ELISA. Bone marrow derived dendritic cells (BM-

DCs) were pulsed with DS Chow (100 ug/ml), DS Chow (A) (100 ug/ml) or DS Exp (100 ug/ml) for 6 h. CD4+ T-

cells were isolated from mesenteric lymph nodes of TNFΔARE/WT mice on Chow diet (MLN-ARE Chow) and 

experimental diet (MLN-ARE Exp). BM-DCs and CD4+ T-cells were cocultured in 96-well plates for 72 h. In each 

experiment, keyhole limpet hemocyanin (KLH, 100 ug/ml) was used as a negative control. Values are means ± 

SD of three independent experiments. 
a,b

 means without a common letter differ, P < 0.001. 

 

 

We designed a feeding experiment, where we transferred TNFΔARE/WT mice to autoclaved 

Chow diet in week seven of age. To assess possible differences in progression of pathology, 

we sacrificed mice after 12 and 18 weeks of age. Tissue pathology assessed by histological 

examination of distal ileal sections could show no differences in disease development and 

severity compared with standard Chow fed TNFΔARE/WT mice (Figure 28). These results 

suggest that live microbial contamination of the Chow diet seems to have no effect on 

histopathology in the TNFΔARE/WT mouse model. 

 

Figure 28. Tissue pathology of TNF
ΔARE/WT

 mice being kept on experimental diet (Exp), Chow diet and 

autoclaved Chow diet (Chow (A)). 

Tissue pathology assessed by histological examination (score 0-12) of distal ileal sections from TNFΔARE/WT 

mice on different diets as indicated. Animals have been sacrificed after 18 or 12 weeks of age. Values are means 

± SD, n = 3-6 per group. 
a,b

 means without a common letter differ, P < 0.001. 
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4.1.11. Gluten-fortified experimental diet induces chronic ileitis in TNFΔARE/WT 

mice 

 

Chow diet is a standard diet that consists of natural components with wheat as a major 

ingredient. Thus, Chow diet is rich in gluten proteins, whereas experimental diet is gluten-

free. We next wanted to investigate, whether there was an effect of gluten in the genetically 

susceptible TNFΔARE/WT mouse model. For this purpose, we designed a gluten-fortified 

experimental diet (Glu). Table 1 illustrates the nutritional composition of Chow, Exp and Glu. 

 

Table 1. Nutritional composition of Chow diet (Chow), experimental diet (Exp) and gluten-fortified 

experimental diet (Glu).  

  Chow Exp Glu 

    Energy [MJ ME/kg] 12,8 14,7 14,7 

Crude protein [%] 19,0 17,6 17,6 

Crude fat [%] 3,3 5,1 5,1 

Crude fiber [%] 4,9 4,1 4,1 

Crude ash [%] 6,4 5,5 5,5 

Starch [%] 36,5 47,2 47,2 

Sugar [%] 4,7 11,3 11,3 

  
   Wheat and wheat products account for 50% and 0% of Chow and Exp ingredients, respectively. Glu has 

been fortified with 100 g gluten per kg diet. For a more detailed illustration of nutrients, see Appendix 1. 

 

In order to assess the inflammatory potential of gluten in the pathogenesis of Crohn‟s 

disease-like ileitis, we set up a feeding experiment using the gluten-fortified experimental diet 

(Glu). Activation of total MLNs from TNFΔARE/WT mice, being fed Chow, Exp and Glu, with 

peptic-tryptic digested gluten (PT-gluten) significantly (P < 0.001) induced secretion of TNF 

(Figure 29A). In contrast, CD4+ T-cell specific IFN-y secretion in coculture experiments with 

PT-gluten pulsed BM-DCs could not be detected, suggesting an antigen-independent co-

activation. In contrast, DS Chow pulsed BM-DCs induced high secretion (P < 0.001) of IFN-y 

(Figure 29B). 
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Figure 29. Cell culture analysis of peptic-tryptic digested gluten (PT-gluten). 

Concentration of TNF and IFN-y in cell culture supernatants, measured by ELISA. (A) Concentration of TNF in 

cell culture supernatants. Mesenteric lymph node cells from TNFΔARE/WT mice (MLN-ARE) on Chow diet 

(Chow), experimental diet (Exp) and gluten fortified experimental diet (Glu) were stimulated with peptic-tryptic 

digests of gluten (PT-Gluten, 100 ug/ml) or dietary suspensions of Chow diet (DS Chow, 100 ug/ml) for 24 h. (B) 

Concentration of IFN-y in coculture supernatants, measured by ELISA. Bone marrow derived dendritic cells (BM-

DCs) were pulsed with PT-Gluten (100 ug/ml) or DS Chow (100 ug/ml) for 6 h. CD4+ T-cells were isolated from 

mesenteric lymph nodes of TNFΔARE/WT mice on experimental diet (ARE Exp CD4+) or gluten fortified 

experimental diet (ARE Glu CD4+). BM-DCs and CD4+ T-cells were cocultured in 96-well plates for 72 h. In each 
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experiment, keyhole limpet hemocyanin (KLH, 100 ug/ml) was used as a negative control. Values are means ± 

SD of three independent experiments. 
a,b

 means without a common letter differ, P < 0.001. 

 

We performed qPCR analysis of distal ileal tissues to analyze changes in inflammation-

related gene expression. TNFΔARE/WT mice being kept on Glu showed significantly (P < 0.01) 

increased expression of TNF and IFN-y compared with TNFΔARE/WT mice on experimental diet. 

There was no difference in expression levels of IFN-y as compared with animals on Chow 

diet. Interestingly, IL-15 expression was significantly (P < 0.01) elevated in TNFΔARE/WT mice 

on Glu but not on Chow diet (Figure 30A). A similar expression pattern could be observed 

regarding TLR2 and TLR4. TNFΔARE/WT mice on Glu showed significantly induced expression 

of both pattern recognition receptors and Chow fed mice showed even higher values (P < 

0.01) (Figure 30B). 

 

 

Figure 30. Quantitative real-time PCR analysis of proinflammatory cytokines and pattern recognition 

receptors. 
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Relative mRNA expression of (A) TNF, IFN-y and (B) TLR2, TLR4 in distal ileal tissue from TNFΔARE/WT mice 

being kept on Exp, Chow and Glu (sacrificed at 18 weeks of age). Values are means ± SD, n = 6 per group.  

a,b,c
 Within each graph, means without a common letter differ, P < 0.01.  

 

 

Tight junction-related occludin (OCLN) was significantly (P < 0.01) decreased in TNFΔARE/WT 

mice with chronic ileitis on Glu and Chow diet. By contrast, zonula occludens-1 (ZO-1) 

expression was not changed in any condition (Figure 31). 

 

Figure 31. Quantitative real-time PCR analysis of tight junction molecules. 

Relative mRNA expression of occludin (OCLN) and zonula occludens-1 (ZO-1) in distal ileal tissue from 

TNFΔARE/WT mice being kept on Exp, Chow and Glu. Values are means ± SD, n = 6 per group. 
a,b,c

 Within each 

graph, means without a common letter differ, P < 0.01. 
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Glu significantly (P < 0.001) induced tissue pathology in the distal ileum after 18 weeks of 

age as assessed by histological scoring of distal ileal sections (Figure 32). Tissue pathology 

was accompanied by strong diarrhea of TNFΔARE/WT mice on Glu diet. 

 

 

Figure 32. Tissue pathology of TNF
ΔARE/WT

 mice being kept on experimental diet (Exp), gluten-fortified 

experimental diet (Glu) and Chow diet. 

Tissue pathology assessed by histological examination (score 0-12) of distal ileal sections from TNFΔARE/WT 

mice (ARE, 18 weeks of age) on experimental diet (Exp), gluten fortified experimental diet (Glu) and Chow diet 

(Chow). Values are means ± SD, n = 6 per group. 
a,b

 means without a common letter differ, P < 0.001. 

 

 

Leukocyte infiltration in distal ileal tissues of TNFΔARE/WT mice was visualized by 

immunohistochemical labeling of CD3+ T-cells. Distal ileal sections of TNFΔARE/WT mice on Glu 

and Chow diet showed increased infiltration of CD3+ T-cells and impaired intestinal 

architecture as compared with TNFΔARE/WT mice on experimental diet (Figure 33), 

corroborating the histological findings. These results suggest gluten as a potential trigger of 

Crohn‟s disease-like ileitis in the TNFΔARE/WT mouse model. 

 

  



4. RESULTS 

 

68 
 

 ARE Exp ARE Glu ARE Chow 
H

&
E

 

   

P
h

a
s

e
 c

o
n

tr
a
s

t 

   

C
D

3
 

   

M
e
rg

e
 

   

 

Figure 33. Fluorescence microscopy of distal ileal tissues from TNF
ΔARE/WT 

mice. 

Representative H&E staining and immunohistochemical labeling (CD3+ T-cells) of distal ileal sections from 

TNFΔARE/WT mice (18 weeks of age) on experimental diet (Exp), gluten fortified experimental diet (Glu) and 

Chow diet (Chow). Fluorescence microscopy is visualized by phase contrast, fluorescence and merged images as 

indicated (100x magnification).  
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4.1.12. Effects of a wheat depleted Chow diet on tissue pathology in TNFΔARE/WT 

mice 

 

We could show that gluten-fortified experimental diet induced chronic ileitis in TNFΔARE/WT 

mice, in contrast to gluten-free experimental diet, which inhibited the development of tissue 

pathology. Next we wanted to analyze the effects of a modified Chow diet (Chow –W), which 

was depleted from wheat products (Table 2). 

 

Table 2. Natural ingredients in standard Chow diet and wheat depleted Chow diet (Chow -W). 

  Chow Chow (-W) 

   

Wheat & wheat products [%] 50,0 / 

Babycorn, pre-treated [%] / 30,6 

Puffed rice [%] / 16 

Soybean products [%] 22,7 27,4 

Barley [%] 16,0 16,0 

  
  Wheat and wheat products have been substituted by corn and rice products in Chow (-W). For a more 

detailed illustration of nutrients, see Appendix 1. 

 

Activation of total MLNs from TNFΔARE/WT with dietary suspensions of Chow (DS Chow) or 

wheat depleted Chow (DS Chow (-W)) significantly (P < 0.001) induced secretion of TNF. No 

difference in immunostimulatory potential of DS Chow and DS Chow (-W) could be detected 

(Figure 34A).  

CD4+ T-cell specific IFN-y secretion in coculture experiments reached comparable levels 

using DS Chow and DS Chow (-W) pulsed BM-DCs. (Figure 34B).  
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Figure 34. Cell culture analysis of dietary suspensions (DS) from Chow diet (DS Chow) and wheat 

depleted Chow diet (DS Chow (-W)). 

Concentration of TNF and IFN-y in cell culture supernatants, measured by ELISA. (A) Concentration of TNF in 

cell culture supernatants. Mesenteric lymph node cells from TNFΔARE/WT mice (MLN-ARE) on Chow diet 

(Chow) and experimental diet (Exp) were stimulated with dietary suspensions of Chow diet (DS Chow, 100 ug/ml) 

or wheat depleted Chow diet (DS Chow (-W), 100 ug/ml) for 24 h. (B) Concentration of IFN-y in coculture 

supernatants, measured by ELISA. Bone marrow derived dendritic cells (BM-DCs) were pulsed with DS Chow 

(100 ug/ml) or DS Chow (-W) (100 ug/ml) for 6 h. CD4+ T-cells were isolated from mesenteric lymph nodes of 

TNFΔARE/WT mice on Chow diet (ARE Chow CD4+) and experimental diet (ARE Exp CD4+). BM-DCs and 
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CD4+ T-cells were cocultured in 96-well plates for 72 h. In each experiment, keyhole limpet hemocyanin (KLH, 

100 ug/ml) was used as a negative control. Values are means ± SD of three independent experiments. 
a,b

 means 

without a common letter differ, P < 0.001. 

 

 

To evaluate the effects of the wheat depleted Chow diet on disease pathogenesis, we started 

a feeding experiment with seven weeks old TNFΔARE/WT mice and kept them on Chow (-W) 

until 18 weeks of age. No differences in ileitis severity could be observed after histological 

examination of distal ileal sections (Figure 35). 

 

 

Figure 35. Tissue pathology of TNF
ΔARE/WT

 mice being kept on Chow diet and wheat depleted Chow diet. 

Tissue pathology assessed by histological examination (score 0-12) of distal ileal sections from TNFΔARE/WT 

mice (18 weeks of age) on Chow diet and wheat depleted Chow diet (Chow (-W). Values are means ± SD, n = 6 

per group. 
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4.2. Dietary modulation of IL-10-/- colitis by experimental diet 
 

In contrast to TNFΔARE/WT mice, which develop a Crohn‟s disease-like ileitis, IL-10-/- mice 

develop spontaneous colitis. It has been shown that IL-10-/- mice being kept under germ-free 

conditions do not develop pathology. Thus, the commensal microbiota is suggested to play a 

crucial role in disease development. 

Based on our findings regarding the protective potential of experimental diet in feeding 

experiments with TNFΔARE/WT mice, we wanted to assess possible effects of experimental diet 

on colitis development in IL-10-/- mice. Animals were transferred from specific pathogen free 

(SPF) to conventional housing conditions at six weeks of age. IL-10-/- mice were kept on 

Chow or experimental diet and sacrificed after 24 weeks of age. 

Dietary treatment had no effect on body weight development. Spleens of IL-10-/- mice on 

Chow and Exp were of comparable size and weight (Figure 36A and B). Spleen to body 

weight ratios showed no significant difference either (data not shown). Colons of animals in 

the Exp and Chow group were of comparable length (Figure 36C). 

 

  

 

Figure 36. Body and organ weights of IL-10
-/-

 mice. 

(A) Body weight, (B) spleen weight and (C) colon 

length of IL-10
-/-

 mice on experimental diet (Exp) and 

Chow diet after 24 weeks of age. Values are means ± 

SD, n = 5 per group. 

 

 

Histological scoring of the distal colon revealed strong tissue pathology in IL-10-/- mice being 

fed Chow, whereas animals on experimental diet showed only mild colitis (p< 0.05) (Figure 
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37A). We next tried to confirm our findings by serum amyloid A (SAA) measurement in 

plasma samples. SAA values of the Chow group were significantly (P < 0.01) increased, 

compared with plasma samples of animals on experimental diet and did highly correlate with 

histology scores (Figure 37B). These data might direct to an interchangeable protective 

effect in Crohn‟s disease-like ileitis and IL-10-/- colitis by dietary intervention using 

experimental diet. 

 

 

Figure 37. Tissue pathology and serum amyloid A (SAA) levels of IL-10
-/-

 mice. 

(A) Tissue pathology assessed by histological examination (score 0-12) of distal colonic sections from IL-10
-/-

 

mice (24 weeks of age) on experimental diet (Exp) and Chow diet (Chow). (B) Serum amyloid A (SAA) values in 

plasma samples of IL-10
-/-

 mice. Values are means ± SD, n = 5 per group. 
a,b 

means without a common letter 

differ, P < 0.05 and P < 0.01 for (A) and (B), respectively. 
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4.3. Experimental diet in the modulation of adoptive transfer colitis and 

ileitis 
 

To evaluate the effects of dietary intervention on disease location, we performed an adoptive 

transfer of CD4+ IL-10-/- T cells into Rag2-/- recipient mice. Recipient mice were kept on Chow 

or experimental diet for 10 weeks after transfer. The T cell transfer model is a valuable tool to 

investigate development of chronic enterocolitis as well as ileitis in the same animal. 

 

Body weights were measured every week to generate a weight curve. There was no 

difference in weight development comparing Rag2-/- recipient mice on Chow and 

experimental diet (Figure 38). 

 

Figure 38. Body weight curves of Rag2
-/-

 mice. 

Body weights of male and female Rag2
-/-

 mice on experimental diet (Exp) and Chow diet (Chow) were measured 

every week starting at the day of T-cell transfer (Baseline). Values are means ± SD, n = 3 per group. 
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We measured organ weights and noticed a significantly (P < 0.05) increased colon weight-to- 

length ratio of Rag2-/- mice in the Chow group. Accordingly, cecum weights of Rag2-/- mice 

were significantly higher (P < 0.001) when kept on Chow. However, no significant difference 

could be found comparing the spleen weights (Figure 39). 

 

  

 

 

Figure 39. Organ weights of Rag2
-/-

 mice. 

(A) Colon weight-to-length ratio, (B) cecum weight and 

(C) spleen weight of Rag2
-/-

 mice (10 weeks after T-

cell transfer) on experimental diet (Exp) and Chow diet 

(Chow). Values are means ± SD, n = 6 per group. 

a,b 
means without a common letter differ, P < 0.05 and 

P < 0.001 for (A) and (B), respectively. 
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We next aimed at evaluating the effects of dietary intervention on colitis compared with ileitis 

pathogenesis. Tissue pathology in distal ileal and distal colonic tissues was assessed by 

histological scoring of H&E stained sections. Surprisingly, no difference in histopathology 

could be observed in moderately inflamed distal ileal tissues of Rag2-/- recipient mice kept on 

Chow or experimental diet (Figure 40A). There was a trend to stronger tissue pathology in 

distal colonic sections of Rag2-/- mice on Chow compared with Rag2-/- mice on experimental 

diet, yet values did not reach significance (Figure 40B). 

 

 

Figure 40. Tissue pathology in the ileum and colon of Rag2
-/-

 mice. 

(A) Tissue pathology assessed by histological examination (score 0-12) of (A) distal ileal and (B) distal colonic 

sections from Rag2
-/-

 mice (10 weeks after T-cell transfer) on experimental diet (Exp) and Chow diet (Chow). 
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We next performed qPCR analysis of distal ileal and colonic tissue sections. Interestingly, 

TNF and IFN-y levels were significantly (P < 0.05) higher in distal ileal tissues of Chow fed 

Rag2-/- mice compared with Exp fed Rag2-/- mice (Figure 41A). By contrast, no difference in 

TNF and IFN-y expression could be seen in colonic tissue mRNA (Figure 41B). 

 

 

Figure 41. Quantitative real-time PCR analysis of proinflammatory cytokines in the ileum and colon. 

Relative mRNA expression of TNF in (A) distal ileal and (B) distal colonic tissue from Rag2
-/-

 mice (10 weeks after 

T-cell transfer) on experimental diet (Exp) and Chow diet (Chow). Values are means ± SD, n = 6 per group.  

a,b 
Within each graph, means without a common letter differ, P < 0.05.  
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Systemic inflammation was assessed by serum amyloid A (SAA) measurement in plasma 

samples of all animals. SAA values were significantly (P < 0.01) elevated in the Chow group, 

suggesting an increased systemic inflammatory response in T-cell transfer recipient mice on 

Chow diet compared with those on experimental diet (Figure 42). 

 

 

Figure 42. Serum amyloid A (SAA) levels of Rag2
-/-

 mice. 

Serum amyloid A (SAA) values in plasma samples of Rag2
-/-

 mice (10 weeks after T-cell transfer) on experimental 

diet (Exp) and Chow diet (Chow). Values are means ± SD, n = 6 per group. 
a,b 

means without a common letter 

differ, P < 0.01. 
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5. DISCUSSION 
 

In clinical studies, nutritional therapy was shown to be efficacious in inducing and maintaining 

remission in Crohn‟s disease patients, associated with improved nutritional status, decreased 

proinflammatory cytokine levels and mucosal healing [119-121]. Even though meta-analysis 

reviews comparing therapeutic efficacy have yielded clinical data that favor corticosteroid 

therapy in adult Crohn‟s disease patients [122, 124, 171], therapeutic outcome may be 

influenced by several factors like patients demography, nutritional adherence, disease state 

and time of intervention [30]. Interestingly, nutritional therapy in the form of EN seems to be 

much more promising in Crohn‟s disease patients and less effective in ulcerative colitis 

patients, the reasons for which are as yet unknown [112, 172]. It is noteworthy that EEN is 

recommended as primary therapy in pediatric  Crohn's disease with clinical response rates 

as high as in corticosteroid therapy, while avoiding its severe adverse effects [126, 128]. 

Moreover, children with newly diagnosed Crohn's disease showed highest responsiveness 

(up to 85%) to EEN. By contrast, in children on relapse, the clinical response rate fell to 50%, 

comparable to the response rate of 53% achieved in the European Cooperative Crohn's 

Disease Study IV, including 107 adults [127, 173]. Thus, timing and IBD subtype seem to be 

important factors for therapeutic outcome. 

Several studies have been performed to elucidate to role of EN formula on therapeutic 

efficacy. Meta-analysis of ten trials comprising 334 patients demonstrated no difference in 

the efficacy of elemental versus non-elemental formulas (OR 1.10; 95% CI 0.69 to 1.75). 

Subgroup analyses performed to evaluate the different types of elemental and non-elemental 

diets (elemental, semi-elemental and polymeric) showed no statistically significant 

differences [122]. A semi-synthetic diet was used in our dietary intervention studies, with 

close resemblance to semi-elemental diet, as applied in clinical settings. However, animals 

were kept on diets provided in a pelleted form instead of liquid diets, as used in clinical 

studies. We used different animal models of mucosal inflammation with focus on the 

TNFΔARE/WT model for Crohn‟s disease-like ileitis, regarding the fact that EN yields highest 

clinical response in Crohn's disease patients. Tissue pathology was selected as main 

experimental endpoint and results were compared with experimental outcome on a standard 

Chow diet. 
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5.1. Effects of dietary intervention on Crohn‟s disease-like ileitis 
 

The semi-synthetic experimental diet exhibited a clear protective effect on tissue pathology 

development in TNFΔARE/WT mice, demonstrated by histological examination of distal ileal 

sections after 18 weeks of age. This effect was accompanied by a significant reduction of 

leukocyte infiltration, MLN weights and total MLN leukocyte numbers. We observed reduced 

tissue activation in the distal ileum with decreased expression of pattern recognition 

receptors, proinflammatory cytokines, as well as reduction of homing associated addressins. 

These findings suggest that chronic intestinal inflammation was inhibited in TNFΔARE/WT mice 

on experimental diet.  

Interestingly, dietary intervention seemed to have no effect on spleen attributes. TNFΔARE/WT 

mice on Chow and experimental diet did not differ concerning spleen weight and yield of 

splenocyte numbers and showed increased values compared with WT animals on each of 

the diets. The spleen plays a crucial role in initiating immune reactions to blood-borne 

antigens and for filtering the blood of foreign material and old or damaged red blood cells. 

Increased spleen size may be associated with several immunologic conditions such as viral, 

parasitic or bacterial infections, lymphoma or chronic inflammatory diseases [174, 175]. 

Besides Crohn‟s-like intestinal inflammation, constitutive expression of TNF in the joints of 

TNFΔARE/WT mice results in erosive polyarthritis, which has also been associated with 

increased spleen size [176]. We did not investigate the effects of dietary intervention on 

polyarthritis pathogenesis in detail but macroscopic and functional observations regarding 

impaired grabbing and climbing ability suggested no dramatic changes of disease 

phenotype. Thus, joint inflammation in addition to constitutive TNF expression in the spleen 

might be the reason for unaltered spleen weights in TNFΔARE/WT mice on Chow and 

experimental diet. 

We performed flow cytometric analysis to further characterize ileitis development in 

TNFΔARE/WT mice. Crohn‟s disease-like ileitis is suggested to be CD8αβ+ T-cell dependent 

[149] and we could confirm an increased ratio of CD8αβ+ to CD8αα+ T-cells in ileal tissues of 

TNFΔARE/WT mice. However, inhibition of chronic ileitis did not modify ratios of CD8+ T-cell 

subpopulations, suggesting that a relative increase of CD8αβ+ T-cells is not necessarily 

associated with intestinal inflammation in TNFΔARE/WT mice. Apostolaki et al. [149] have shown 

that development of intestinal inflammation in this mouse model is critically dependent on β7 

integrin-mediated T-lymphocyte recruitment, suggesting that upregulation of homing 

mechanisms in immunoactivated tissues, associated with increased infiltration of leukocytes 

in general might be more important for ileitis development than dominance of the CD8αβ+ T-

cell subtype. Moreover, it has been shown that selective chronic overproduction of TNF by 

IEC suffices to cause full development of Crohn‟s-like pathology [177]. Epithelial TNF 
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overexpression leads to early activation of underlying intestinal myofibroblasts, which are a 

sufficient target of TNF for disease development in the TNFΔARE/WT model. 

Analogous to flow cytometric results of intestinal tissues, in this study no phenotypic 

difference could be seen in MLN leukocyte populations after dietary intervention, although 

clear differences in MLN weight and leukocyte numbers could be detected. MLNs play a 

crucial role in the induction of mucosal immune responses. Intravascular naive T-cells home 

to the inductive sites of the gut-associated lymphoid tissue (GALT), including Peyer's patches 

(PPs), isolated lymphoid follicles as well as the gut-draining MLNs to mount a protective 

immune response to enteric pathogens. It is suggested that MLNs may function as primary 

gut-associated inductive site where naive T-cells first encounter enteric antigens, which are 

transported by antigen-loaded dendritic cells (DCs) from the intestinal lamina propria and 

PPs via afferent lymphatics [178]. When naive T-cells encounter their cognate antigens, 

antigen-driven priming/activation, polarization, and expansion takes place to yield specific 

effector T-cells [179, 180]. Results from several different animal studies suggest that in the 

absence of appropriate regulatory mechanisms, this same sequence of events may occur in 

response to commensal bacteria resulting in enteric antigen-dependent induction of chronic 

intestinal inflammation [181-183]. Thus, we suggest that increased MLN weights of 

TNFΔARE/WT mice on Chow were associated with increased effector T-cell generation and 

presence of enteric antigens required for the induction of chronic intestinal inflammation. 

On Chow diet, TNFΔARE/WT mice develop a moderate inflammation in the distal ileum within 

eight weeks of age and severe pathology can be observed after 12 weeks of age [184]. 

Dietary intervention using experimental diet was successful in the inhibition of intestinal 

inflammation in TNFΔARE/WT mice. To find out whether experimental diet could also be used to 

induce remission in a state of progressed inflammation, we transferred TNFΔARE/WT mice to 

experimental diet at different time points. Histological findings showed that early dietary 

intervention seems to be crucial to maintain gut homeostasis, whereas induction of remission 

at later time points (10 and 14 weeks of age) was not possible. These data suggest that 

progression of pathology could be inhibited by experimental diet at an early stage. However, 

an established inflammatory setting could not be reversed. There seems to be a critical time 

frame between week 7 and 10 with regards to efficacy of the experimental diet. Severe 

intestinal inflammation is associated with reduced barrier function, increased intestinal 

permeability and bacterial translocation, leading to direct contact of luminal antigens and gut 

resident immune cells [185]. A proinflammatory environment in TNFΔARE/WT mice with 

dysregulated TNF biosynthesis might dominate regulatory mechanisms. Under these 

conditions, direct contact with luminal antigens might be the inflammatory point of no return, 

when dietary intervention becomes ineffective. Yet, these are speculations and further 

experiments need to be done to elucidate the underlying mechanisms. Interestingly, when 
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we transferred mature mice from experimental diet to Chow diet after 12 weeks of age, 

inflammation was already found to be moderately and strongly expressed after two and six 

weeks on Chow, respectively. Histological scores describing tissue pathology resembled 

those being reported by Baur et al. [184] after eight and 12 weeks, respectively, pointing at 

an accelerated onset of pathology in mature TNFΔARE/WT mice. To investigate the 

pathogenesis of Crohn‟s disesase-like ileitis on Chow diet in more detail, we designed 

customized diets with increasing concentrations of Chow content on the basis of a semi-

synthetic diet. A Chow content of only 1% was sufficient to produce a scattered picture of 

inflammation and 10% induced maximal pathology in the treatment groups. These 

observations may suggest pure experimental diet to maintain a homeostatic state, which is 

protective but labile and susceptible for modulation. 

It is noteworthy that we could not detect any effect of Chow compared to experimental diet in 

WT mice regarding the histological appearance of the distal ileum. However, we identified a 

small but significant diet-related effect on mRNA expression of the pattern recognition 

receptors TLR-2 and TLR-4, which were less expressed in WT mice on experimental diet 

compared with Chow diet. But we did not analyze TLR signaling and thus may only speculate 

about modified TLR sensing and activity. Nonetheless, there was a significant diet-related 

effect on cecum weight in WT and TNFΔARE/WT mice. Cecum weights were clearly increased 

on Chow diet and this effect was even pronounced under inflammatory conditions. The 

cecum is a pouch, connecting the ileum with the ascending colon of the large intestine. It 

hosts a large number of bacteria, which aid in the enzymatic breakdown of nutrients. Thus, 

dietary intervention may have a big impact on cecal microbial composition and related 

metabolite production [186, 187]. Certain indigenous microorganisms may play an essential 

role in maintaining the integrity of sodium chloride associated water-transport mechanism in 

the intestinal epithelium [188-190]. Water was shown to accumulate in the cecal lumen in 

mice given antibacterial drugs in their drinking water after the first 24 to 48 hours of the 

treatment leading to increased cecal size. The microorganisms most likely to be involved, 

affecting cecal physiology are anaerobic bacteria that predominate in the cecal microbiota 

[189, 191]. Germ-free rodents show also enlarged cecal proportions corroborating the impact 

of cecal microbes on cecum physiology [190]. Dietary effects on cecum size, thus, may be 

related to changes in the cecal microbiota and might also be associated with altered 

expression and recognition of enteric antigens. Moreover, inflammation in TNFΔARE/WT mice is 

not only restricted to the distal ileum, but may also affect the cecum and proximal colon. 

Thus, inflammatory processes may play an additional role in the modulation of cecal 

proportions. In this study, we could not detect an accumulation of cecal water but an increase 

in total mass of cecal content. Thus, we suggest that differences in cecum weight originated 
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from the interplay between an altered microbial composition and metabolic activity in 

combination with dysregulated tissue physiology due to inflammatory processes. 

 

Furthermore, we observed Chow pellets to have a coarse-grained particle structure, in 

contrast to the homogenous grained pellets of experimental diet. Bowel activity was 

speculated to be enhanced in animals being kept on Chow diet, which was associated with a 

general increase of intestinal thickening in TNFΔARE/WT and WT mice. However, achievement 

of induction of remission in nutritional therapy is in part suggested to be associated with 

decreased bowel activity [192]. The intestinal mucosal layer is confronted with numerous 

forces. For example, mucosal cells may experience pressure and shear stress from 

interaction with relatively non-compressible endoluminal chyme and increasing evidence 

suggests that such forces may substantially influence intestinal mucosal cell biology [193]. In 

pathologic conditions such as chronic inflammatory states, intraluminal pressures are often 

elevated and may adversely affect gut physiology and healing [194]. Contraction of the 

muscular layers thus may result in mucosal compression, as the mucosa is squeezed 

between the contracting musculature and the non-compressible chyme [195]. Although Chow 

fine had a decreased grinding state as measured by laser diffraction analysis, particle size 

distribution in ileal and cecal contents did not differ and no reduction of tissue pathology 

could be observed in distal ileal sections. 

To analyze the composition of cecal contents in more detail, we prepared cecal bacterial 

suspensions and performed Fourier-transform infrared spectroscopy (FT-IR) analysis. FT-IR 

is a physiochemical technique, considered to be a powerful method for characterizing 

chemical compositions of complex probes [196]. In FT-IR, all cellular components contribute 

to the spectral pattern generated, and thus represents an adequate tool to differentiate and 

identify microorganisms in situations, where environmental conditions affect the whole cell. In 

addition, a number of recent studies have shown that FT-IR spectroscopy can help to 

understand microbial responses, when exposed to stress conditions in the environment such 

as inflammation or dietary intervention [197]. Spectral distances of bacteria-associated 

clusters between Chow and experimental diet groups were most striking in dendrograms of 

whole range (4000-600 cm-1) FT-IR spectra and spectra focusing on the fingerprint region in 

the carbohydrate specific area between 1200 and 900 cm-1. Carbohydrate specific 

differences in the absorption spectra might occur due to the effects of a distinct sugar 

composition of the complex Chow diet on cecal bacteria. Indeed, alterations of glycoprotein 

structures in bacterial cell walls or variations in carbohydrate metabolite profile may be 

factors that contribute to differences in this region. Consequently, we next aimed at 

characterizing functional alterations in the cecal microbiota with effects on microbial 

antigenicity. 
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Coculture analyses with cecal lysate pulsed BM-DCs in combination with CD4+ T-cells 

showed strong immunostimulatory effects of the cecal lysates, yet no difference in 

antigenicity could be found. Kim et al. [198] described that colitis initiated by inoculation of 

nonpathogenic bacteria (Enterococcus faecalis and Escherichia coli) into germ-free IL-10−/− 

mice exhibited distinct patterns of intestinal inflammation in different anatomical locations. In 

a coculture system they could show that CD4+ T-cells from Enterococcus faecalis or 

Escherichia coli monoassociated interleukin 10−/− mice selectively produced higher levels of 

IFN-γ and IL-4 when stimulated with APCs pulsed with the bacterial species that induced 

disease. Thus, the authors suggested that different cytokine levels could be explained by 

bacterial-antigen specific responses. In contrast to our study, Kim et al. used T-cell depleted 

splenocytes as APCs that were mainly composed of B-cells (88%–95%) [198]. Regulatory 

mechanisms of primed APCs compared with in vitro generated BM-DCs may have an 

influence on experimental outcome. Strong activation of T-cells by highly activated BM-DCs 

might overshadow cecal lysate associated specific effects. Thus, modifications of the 

coculture system regarding the use of primed APCs isolated from local tissues might identify 

diet induced differences in antigenicity. Furthermore, the pre-purification of cecal lysates 

using endotoxin-removal systems or targeted culture of bacterial candidates from cecal 

content on selective agar plates followed by bacterial lysate preparation might be an 

additional approach. Yet, another possibility is that there is no antigen specific effect of the 

experimental diet on the cecal microbiota and that the protective state of TNFΔARE/WT mice on 

semi-synthetic diet is independent of the cecal microbial antigenicity. 

 

TNFΔARE/WT mice under conventional conditions invariably developed chronic ileitis. By 

contrast, TNFΔARE/WT mice raised in a specific pathogen free environment partly did not show 

tissue pathology, indicating that modulation of pathogenesis seems to be possible also on 

Chow diet (personal communication). Apart from absence of certain microbial species and an 

increased level of general hygiene, Chow diet was autoclaved for SPF conditions to avoid 

contamination with food-borne microbial agents. In contrast to experimental dietary 

suspensions, we could show that dietary suspensions of Chow pellets had 

immunostimulatory properties in cell culture experiments. However, autoclaving of the Chow 

diet did not have a disease preventative effect on ileitis development in vivo, although 

autoclaved Chow lost its immunostimulatory effects in cell culture experiments. Several 

animal models of intestinal inflammation do not develop pathology under germ-free 

conditions, indicating microbial interactions to play a crucial role in the modulation of 

gastrointestinal disorders [199]. The effects of a germ-free environment on Crohn‟s disease-

like ileitis have not yet been investigated. However, the invariable expression of chronic ileitis 

in Chow fed TNFΔARE/WT mice under conventional conditions in contrast to the scattered 
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occurrence of inflammation in SPF animal housing and disease-ameliorating effects of 

antibiotic treatment (personal communication) may suggest that the gut microbiota plays a 

crucial role in the TNFΔARE/WT mouse model. Interestingly, we have noticed that dietary 

intervention using experimental diet was not exclusively protective for ileitis development. 

Approximately 10% of TNFΔARE/WT mice showed moderate and less often severe inflammation 

despite being kept on experimental diet. This phenomenon did not seem to be related with 

caging or breeding effects, because it could also be observed between siblings in the same 

cage. These observations corroborated the theory of a protective but labile state of intestinal 

homeostasis on experimental diet.  

Earlier experiments suggested iron deficient experimental diet to be protective against ileitis 

development in TNFΔARE/WT mice, whereas iron adequate experimental diet seemed to induce 

inflammation. It could be shown that iron-depleted experimental diet induced significant 

changes in cecal microbial composition and that abundance of certain bacterial genera 

correlated with histology scores of distal ileal sections [200]. These findings might seem to be 

contradictory to our present observations at first glance, though, at the same time, they might 

reflect the susceptibility of experimental diet related intestinal homeostasis to external 

triggers and variations in the gut microbiota. It is noteworthy that microbiota dependent 

animal models, being bred in different animal facilities may have different characteristics and 

experimental outcomes [201]. This circumstance further corroborates the strong impact 

microbial variations may have on disease phenotype. It is reasonable that the microbial 

ecology may be subject to variations over time and that animal models may adapt to 

environmental factors with increased numbers of breeding generations which might also shift 

the narrow time frame where experimental diet can exhibit a preventive effect on chronic 

ileitis development in TNFΔARE/WT mice. However, further analyses need to be performed to 

reveal putative correlations between distinct microbial agents and Crohn‟s disease-like 

pathogenesis. Pyrosequencing technology will be used to characterize the microbial 

composition of TNFΔARE/WT mice on different diets associated with intestinal homeostasis and 

inflammation. Comparison of pyrosequencing data from earlier and recent experiments 

showing equivocal results will reveal changes of the microbial composition over time and 

may lead to the identification of microbial agents critical for Crohn‟s disease-like 

pathogenesis. 
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5.2. Gluten and Crohn‟s disease-like ileitis 
 

A striking difference between Chow diet and experimental diet regarding nutrient composition 

is the presence of wheat and wheat derived products that account for 50% of Chow 

components, whereas experimental diet is free of wheat compounds. Wheat related 

gastrointestinal disorders are of common incidence. Apart from wheat allergies, gluten 

intolerance seems to be one of the most prevalent reasons [202]. It is to note that recent 

studies could show gluten to have effects not only in genetically predisposed people. HLA 

DQ2 or DQ8 haplotypes are found in over 90% of celiac disease patients, leading to an 

inappropriate T-cell mediated immune response against ingested, deamidated gliadin 

peptides [203, 204]. Several studies reported that celiac disease is a condition in which 

paracellular permeability is enhanced and the integrity of the tight junction system is 

compromised [205, 206]. However, accumulating clinical evidence supports the existence of 

an irritable bowel syndrome (IBS)-like form of gluten sensitivity named non-celiac gluten 

intolerance [207, 208]. Drago et al have investigated the effect of gliadin on permeability of 

celiac and non-celiac intestinal mucosa. Their results provided evidence that gliadin activates 

zonulin signaling, resulting in immediate reduction of intestinal barrier function and passage 

of gliadin into the subepithelial compartment irrespective of a genetic predisposition [209]. 

Moreover, Biesiekierski et al. conducted a double-blind, randomized, placebo-controlled 

rechallenge trial in patients with irritable bowel syndrome in whom celiac disease was 

excluded and who were symptomatically controlled on a gluten-free diet. Compared with the 

gluten group, patients who remained gluten free reported significant improvements in pain, 

bloating, satisfaction with stool consistency and tiredness. The authors concluded that gluten 

is associated with overall IBS symptoms, in a subset of patients [142]. Another group 

suggested that several forms of gluten intolerance might occur frequently not only in patients 

with gastrointestinal symptoms, but also in first- and second-degree relatives and patients 

with numerous common disorders even in the absence of gastrointestinal symptoms [210]. 

The negative effects of gluten administration might have even more impact in a setting where 

intestinal homeostasis is disturbed and proinflammatory mechanisms dominate like in the 

TNFΔARE/WT mouse. In support of this hypothesis, it has been shown that the persistent 

presence of inflammatory mediators such as TNF and IFN-y may increase the permeability 

across the endothelial and epithelial layers [211, 212].  

To test this hypothesis, we designed a gluten-fortified experimental diet, which was identical 

with pure experimental diet except that parts of the casein fraction were replaced by gluten. 

The gluten-fortified experimental diet induced intestinal inflammation in AREs in vivo, which 

was associated with increased levels of TNF, IFN-y and IL-15 as well as TLR-2 and TLR-4 

expression in distal ileal tissues. Interestingly, PT-gluten stimulation of MLNs from Chow, 
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experimental and gluten- fortified experimental diet treatment groups resulted in comparable 

TNF secretion, whereas T-cell dependent IFN-y secretion did not occur. These findings 

suggest an antigen-independent co-activation of immune cells rather than T-cell specific 

antigen recognition. Several studies have been performed to identify the antigenic agent, 

responsible for gluten intolerance in celiac patients. Gluten consists of gliadin and glutenin 

fractions. Specific gliadin peptides that are deamidated by tissue transglutaminase (e.g., 

alpha-gliadin P57-68) bind to HLA DQ2 and/or DQ8 molecules and may induce an adaptive 

Th1 proinflammatory response in a genetically susceptible host [213]. However, early innate 

immunity has been considered as another possible key element in celiac disease [214]. In 

the case of the innate immune response, alpha-gliadin P31-43, which is not recognized by T 

cells, induces IL15 production, which in turn is thought to cause expansion of intra epithelial 

lymphocytes (IEL) and induction of epithelial apoptosis that is independent of TCR specificity 

[215-217]. In addition, imbalances in the intestinal microbial composition have been 

associated with celiac disease, suggesting a role of intestinal microbiota in this pathology as 

well [218]. Mouse models for celiac disease are rare and need to have genetically 

humanized modifications regarding TCR and HLA genes to develop pathogenesis [219]. To 

our knowledge, no spontaneous celiac disease model exists to date and gluten 

responsiveness of the TNFΔARE/WT mouse could especially contribute to the understanding of 

non-celiac gluten intolerance. Further experiments need to be performed to describe the 

fundamental mechanisms in more detail, including the analysis of gluten related effects on 

intestinal homeostasis in WT mice. 

Adherence to a gluten-free diet is efficient for induction of remission and recover of intestinal 

homeostasis in patients with celiac disease and gluten intolerance [202]. However, wheat 

depleted, gluten-free Chow diet neither had reduced immunostimulatory properties in cell 

culture experiments, nor was there any positive effect on ileitis development in TNFΔARE/WT 

mice in vivo. Yet, wheat depleted Chow still is a complex mixture of natural ingredients, with 

barley accounting for 16% of content. Indeed, it has been shown that gluten-like proteins in 

barley and rye may also trigger immune responses in celiac patients [220], thus, Chow (-W) 

may not be an adequate equivalent to a gluten-free diet.  
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5.3. Impact of experimental diet on IL-10-/- mice and T-cell transfer colitis 
 

Dietary intervention using experimental diet was successful for prevention of chronic ileitis in 

TNFΔARE/WT mice. To investigate the effects of experimental diet on colitis pathogenesis, we 

performed a feeding experiment with IL-10-/- mice. In contrast to the TNFΔARE/WT mouse 

model, where proinflammatory mechanisms dominate due to impaired regulation of TNF 

translation, imbalance of immune homeostasis in the IL-10-/- colitis model originates from 

impaired anti-inflammatory mechanisms that lead to the development of enterocolitis [153]. 

Although no differences could be found in body weight, spleen weight and colon length, 

histological examination of colonic sections clearly showed increased tissue pathology in the 

Chow group, which was confirmed by increased SAA plasma levels. The high standard 

deviations of the Chow group derived from two outliers, one that did not develop colitis and 

another that showed extreme tissue pathology. Interestingly, IL-10-/- mice on experimental 

diet showed only mild signs of inflammation with low interindividual variations, suggesting 

that the efficacy of dietary intervention with experimental diet was not restricted to Crohn‟s 

disease-like ileitis. Generally, IL-10-/- mice raised in a SPF or conventional environment 

develop colitis marked by epithelial cell hyperplasia and transmural inflammation [153]. Yet, 

colitis does not develop under germ-free conditions and thus is suggested to be driven by 

antigens of the mucosal microbiota [221, 222]. Moreover, IL-10-/- mice exhibit increased 

intestinal permeability even prior to the development of overt colitis. This change in barrier 

function may lead to increased contact with or stimulation by antigens in the mucosal 

microbiota and thus might be a factor that facilitates the development of inflammation [223]. 

The break in normal “tolerance” to commensal antigens thus might be modified by dietary 

intervention using experimental diet. Though, whether the underlying mechanism, which 

inhibits mucosal inflammation in IL-10-/- colitis is similar to the prevention of Crohn‟s disease-

like ileitis could not be resolved and remains to be elucidated. 

The T-cell transfer model of colitis represents another model of inadequate regulatory 

response, which is driven by microbial antigens and leads to mucosal inflammation. In 

addition to naïve CD4+ CD45RBhi T-cells, CD4+ IL-10-/- T-cells may be used for the induction 

of T-cell transfer colitis in immunocompromised Rag2-/- recipient mice. It seems to be 

underappreciated that apart from colitis, these animals develop small intestinal inflammation, 

especially in the distal part [159]. Thus, the T-cell transfer model may be used as a tool to 

study the effects of dietary intervention on colitis and ileitis development at the same time. 

Although we could not detect a significant difference in body or spleen weight, comparison of 

Chow and experimental diet treatment groups revealed significant differences in cecum 

weight and colon weight-to-length ratios, which have been found to correlate with histological 

scores in T-cell transfer colitis [224]. However, in TNFΔARE/WT mouse experiments, we have 
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observed that significant differences in cecum weights may also occur among healthy WT 

mice due to dietary effects. Interestingly, histological examination of distal ileal and distal 

colonic sections exhibited no pathological difference comparing Chow and experimental diet 

groups.  

In T-cell transfer models, increased tissue pathology usually is associated with a loss of body 

weight [224]. As we could not see differences in weight over time in any group (apart from 

gender-specific differences), dietary effects on mucosal inflammation might have been visible 

with prolonged experimental time. Furthermore, molecular characteristics of the transferred 

effector T-cells and their interaction with the commensal microbiota seem to be crucial 

factors for disease pathogenesis. Animals fail to develop disease under germ free conditions 

and co-transfer of regulatory T-cells can inhibit colitis development [225]. Moreover, Strauch 

et al. have shown that SCID recipients, which received naive T-cells from germ free donors, 

developed an earlier onset of colitis compared with mice reconstituted with lymphocytes from 

conventionally housed animals [226]. Earlier experiments showed that T-cell transfer colitis 

exhibited a late onset of inflammation associated with a scattered inflammatory phenotype of 

the immunodeficient recipient mice when conducted in our SPF animal facility (personal 

communication). In the T-cell transfer experiment described above, donor CD4+ IL-10-/- T-

cells were derived from SPF, whereas Rag2-/- recipient mice were kept under conventional 

conditions. Therefore, it would be interesting to repeat the experiment with both donors and 

recipients being kept under conventional conditions to avoid differences in the initial 

microbiota. Nevertheless, proinflammatory cytokines TNF and IFN-y were increased in distal 

ileal tissues of Chow fed animals, although no difference in regulation could be observed in 

distal colonic tissues. Moreover, T-cell transfer recipient mice on experimental diet showed 

clearly reduced levels of SAA compared with mice on Chow diet, suggesting a lower state of 

systemic inflammation and thus a positive effect of experimental diet on T-cell adoptive 

transfer colitis in Rag2 -/- mice.  
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5.4. Conclusion and outlook 
 

We have shown that pathogenesis of Crohn‟s disease-like ileitis can be inhibited by early 

dietary intervention using an experimental diet. However, administration of experimental diet 

could not be used for induction of remission in an already established inflammatory setting. 

Interestingly, clinical studies of nutritional therapy have shown that EEN is effective for 

inducing remission in pediatric Crohn's disease especially in newly diagnosed patients [172]. 

In conclusion, these observations might suggest that early administration of nutritional 

therapy could be associated with a favored therapeutic outcome  

Strong efforts have been made to elucidate the mechanisms underlying EN therapy. Several 

aspects have been suggested to be involved such as induction of bowel rest, decreased 

intestinal permeability, modulation of the microbiota and associated increase and decrease 

of anti-inflammatory and proinflammatory responses, respectively [227-229]. Dietary antigens 

in the protein fraction were assumed to be another factor contributing to immune dysbalance, 

though evaluation of polymeric diets showed no difference in efficacy compared with 

elemental diets. Apart from being solid, the semi-synthetic experimental diet used throughout 

the experiments has a similar composition to semi-elemental diets used for EN therapy. 

Consequently, the observed protective effects in our feeding experiments and its underlying 

mechanisms might also reveal interesting concepts, relevant for the improvement of EN 

therapy.  

In general, intestinal homeostasis on experimental diet seems to be labile and Chow 

contents of only 1% were sufficient to induce moderate ileitis. In addition, transfer of mature 

TNFΔARE/WT mice from experimental diet to Chow diet resulted in rapid disease development. 

It is strongly suggested that the microbial composition and microbe-host interactions play a 

crucial role in the modulation of Crohn‟s disease-like ileitis in TNFΔARE/WT mice. To dissect the 

contribution of microbial interactions in more detail, transfer of TNFΔARE/WT mice to a germ free 

environment in combination with monoassociation studies may be a promising approach. A 

comprehensive analysis of pyrosequencing data from different feeding experiments with 

different inflammatory outcomes may yield microbial candidates for further monoassociation 

studies. Apart from ileitis prevention, it would be interesting whether experimental diet may 

also be effective in maintenance of remission. Anti-TNF antibody or antibiotic therapy might 

be tested to induce remission in TNFΔARE/WT mice. Subsequent administration of Chow or 

experimental diet in absence of medical intervention might yield important knowledge about 

the role of experimental diet in maintaining remission. In clinical practice, responsiveness of 

Crohn's disease patients to EN is variable and the relapse rate is about 65% at 12 months in 

adult studies [122]. Moreover, EN therapy seems to be not efficient in ulcerative colitis 
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patients. The reasons for this variability are not known but might be useful for the 

improvement of therapeutic strategies.  

Profound understanding of the modulation of microbial ecologies using nutritional therapy 

and the immunologic consequences caused by altered microbe host interactions would 

strongly contribute to the development of improved therapeutic strategies for IBD treatment. 

Cutting edge technologies such as pyrosequencing analysis, metabolomics and 

nutrigenomics may provide deeper insights into the effects of dietary intervention on 

intestinal homeostasis and interindividual variations. A combination of these technologies 

might have strong impact on the future development of highly efficient, personalized 

strategies for nutritional therapy. 
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6. APPENDIX 
 

Appendix 1. Nutrient composition of the diets used in the project. Detailed information about 

diet ingredients is provided on the following pages in form of the original manufacturer‟s data 

sheets. 

   

Ingredients  Percentage 

   

Ssniff Exp (Control diet EF R/M (E15000))   

Casein, acid  %  24.0  

Corn starch, pre-gelatinized  %  30.0  

Maltodextrin  %  19.6  

Glucose (Dextrose)  %  10.0  

Cellulose powder  %  5.0  

L-Cystine  %  0.2  

Vitamin premix, w/o choline Cl  %  1.0  

Mineral & tace element premix  %  6.0  

Choline Chloride  %  0.2  

Soybean oil  %  4.0  

   

 

 

Altromin Exp (Control diet C1000)   

   

Casein, purified %  20.0  

Corn starch, purified %  53.0  

Saccharose,refined  %  10.0  

Cellulose powder,purified  %  4.0  

Vit. Form. C 1000 with Saccharose  %  2.0  

Minerals and trace elements.Form. C 1000  %  6.0  

Sunflower oil,refined.  
%  

5.0  
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Altromin Glu (Control diet C1000 + 10% gluten)   

   

Casein, purified %  10.6  

Corn starch, purified %  52.4  

Saccharose,refined  %  10.0  

Cellulose powder,purified  %  4.0  

Vit. Form. C 1000 with Saccharose  %  2.0  

Minerals and trace elements.Form. C 1000  %  6.0  

Sunflower oil,refined.  
%  

5.0  

Gluten from wheat (Sigma-Aldrich)  % 10.0  

   

 

 

Ssniff Chow (R/M-H  (V1534))   

   

Wheat & wheat products  %  50.0  

Barley  %  16.0  

Soybean products  %  22.7  

Amino acids  %  0.2  

Vitamins & trace elements  %  1.3  

Minerals  %  3.4  

Fiber sorces (Ø ~19 % CF)  %  6.4  
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Ssniff Chow (-W) (S5745-S020)   

   

Babycorn, pre-treated  %  30.6  

Puffed rice  %  16.0  

Barley  %  16.0  

Soybeanmeal  %  19.4  

Soybean concentrate  %  8.0  

Lignocellulose  %  1.0  

L-Lysine HCl  %  0.1  

DL-Methionine  %  0.1  

Vitamin & trace element premix  %  1.0  

Monocalcium phosphate  %  1.4  

Calcium carbonate  %  1.0  

Calcium propionate  %  0.5  

Salt (NaCl)  %  0.6  

Sorbic acid  %  0.1  

Choline Chloride  %  0.3  

Sugar beet pulp. dehydrated  %  3.0  

Soybean oil  %  1.0  
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ssniff® R/M-H  
Alleinfuttermittel für die Haltung von Ratten und Mäusen 
 

Beschreibung 
Dieses Futtermittel ist für Ratten und Mäuse im Erhaltungsstoffwechsel vorgesehen. Aufgrund der 
ausgewogenen Nährstoffkonzentrationen bei mittlerer Energiedichte und niedrigem Nitrosamin-Ge-
halt ist es auch als Basisfutter für Langzeitstudien gut geeignet. 
 

 
Rohnährstoffe [%] 
Trockensubstanz 87,7 
Rohprotein (N x 6,25) 19,0 
Rohfett  3,3 
Rohfaser 4,9 
Rohasche 6,4 
N-freie Extraktstoffe 54,1 
Stärke 36,5 
Zucker 4,7 
 

Energie [MJ/kg] 
Bruttoenergie (GE) 16,3 
Umsetzbare Energie (ME) * 12,8  

Mineralstoffe  [%] 
Calcium 1,00 
Phosphor 0,70 
Natrium 0,24 
Magnesium 0,22 
Kalium 0,91 

Fettsäuren  [%] 
C 14:0 0,01 
C 16:0 0,47 
C 16:1 0,01 
C 18:0 0,08 
C 18:1 0,62 
C 18:2 1,80 
C 18:3 0,23 
C 20:0 0,01 
C 20:1 0,02 
C 20:5 ---- 
C 22:6 ---- 

Aminosäuren  [%] 
Lysin 1,00 
Methionin 0,30 
Met+Cys 0,65 
Threonin 0,68 
Tryptophan 0,25 
Arginin 1,14 
Histidin 0,44 
Valin 0,88 
Isoleucin 0,76 
Leucin 1,30 
Phenylalanin 0,85 
Phe+Tyr 1,43 
Glycin 0,80 
Glutaminsäure 3,90 
Asparaginsäure 1,61 
Prolin 1,25 
Alanin 0,79 
Serin 0,89  

Vitamine per kg 
Vitamin A 15.000 IE 
Vitamin D3 1.000 IE 
Vitamin E 110 mg 
Vitamin K (als Menadion) 5 mg 
Thiamin (B1) 18 mg 
Riboflavin (B2) 23 mg 
Pyridoxin (B6) 21 mg 
Cobalamin (B12) 100 µg 
Nicotinsäure 135 mg 
Pantothensäure 43 mg 
Folsäure 7 mg 
Biotin 525 µg 
Cholin-Cl 2.990 mg 
Inositol 100 mg 

Spurenelemente  per kg 
Eisen 179 mg 
Mangan 69 mg 
Zink 94 mg 
Kupfer 16 mg 
Iod 2,2 mg 
Selen 0,3 mg 
Cobalt 2,1 mg 

 
* ME berechnet nach der Schätzformel für Schweine, 

Anlage 4 der Futtermittelverordnung 
 

Hauptprodukte 
V1530-0 Mehl, einfach vermahlen 
V1534-0 10 mm Pellets 
V1535-0 15 mm Pellets 
 
 
Produktion und Vertrieb 
ssniff Spezialdiäten GmbH 
Phone: +49-(0)2921-9658-0 
Fax:  +49-(0)2921-9658-40 
E-Mail mail@ssniff.de 
www.ssniff.de 

Energiedichte [MJ ME/kg] und  
Protein-/Energie-Verhältnis [g XP/MJ ME] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

58 % aus
Kohlenhydraten 33 % aus

Protein
9 % 

aus Fett 

Futterzusammensetzung 
absteigende Reihenfolge der Gruppen (FMV) 
Getreide und Getreidenebenprodukte, Ölsaat-
produkte, Mineralstoffe, pflanzliche Öle, Vita-
mine, Spurenelemente. 

7

9

11

13

15

17

19

ME XP/ME

R/M-H Extr. R/M-H auto R/M-H R/M-H Ered I R/M-H Ered II
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ssniff® EF R/M Kontrolle  
Experimentalfuttermittel für Ratten und Mäuse 
 

Beschreibung 
Dieses Futtermittel basiert auf hoch gereinigten Ausgangserzeugnissen (purified diet) und 
ist daher für Studien vorgesehen, die eine besonders genaue Einstellung der Nährstoffkon-
zentrationen erfordern; dabei weist die Experimentaldiät eine hohe Nährstoffverfügbarkeit 
auf, sodass der Bedarf von Ratten und Mäusen im Erhaltungsstoffwechsel sowie im Wachs-
tum in vollem Umfang gedeckt wird. Diese Futtermischung dient zugleich als Basis für na-
hezu sämtliche gereinigten bzw. halb-synthetischen ssniff® Diäten. 

 
Rohnährstoffe [%] 
Trockensubstanz 95,2 
Rohprotein (N x 6,25) 20,8 
Rohfett  4,2 
Rohfaser 5,0 
Rohasche 5,6 
N-freie Extraktstoffe 59,4 
Stärke 46,8 
Zucker 10,8 

 

 

Energie [MJ/kg] 
Bruttoenergie (GE) 18,0 
Umsetzbare Energie (ME) 
 
 
 15,4 1) 
 
 
 
 
 15,0 2)  
 
 
 

Mineralstoffe  [%] 
Calcium 0,90 
Phosphor 0,63 
Natrium 0,19 
Magnesium 0,21 
Kalium 0,97 

Fettsäuren  [%] 
C 8:0 ---- 
C 10:0 ---- 
C 12:0 ---- 
C 14:0 0,02 
C 16:0 0,45 
C 16:1 0,02 
C 18:0 0,19 
C 18:1 1,07 
C 18:2 2,12 
C 18:3 0,26 
C 20:0 0,02 
C 20:1 ---- 
C 20:5 ---- 
C 22:6 ---- 
 

Aminosäuren  [%] 
Lysin 1,71 
Methionin 0,73 
Met+Cys 0,82 
Threonin 0,93 
Tryptophan 0,27 
Arginin 0,76 
Histidin 0,66 
Valin 1,42 
Isoleucin 1,09 
Leucin 2,05 
Phenylalanin 1,11 
Phe+Tyr 2,22 
Glycin 0,43 
Glutaminsäure 4,69 
Asparaginsäure 1,55 
Prolin 2,39 
Alanin 0,68 
Serin 1,24  

Vitamine per kg 
Vitamin A 15.000 IE 
Vitamin D3 1.500 IE 
Vitamin E 150 mg 
Vitamin K (als Menadion) 20 mg 
Vitamin C 30 mg 
Thiamin (B1) 16 mg 
Riboflavin (B2) 16 mg 
Pyridoxin (B6) 18 mg 
Cobalamin (B12) 30 µg 
Nicotinsäure 49 mg 
Pantothensäure 56 mg 
Folsäure 19 mg 
Biotin 310 µg 
Cholin-Cl 1.040 mg 
Inositol 80 mg 

Spurenelemente per kg 
Eisen  166 mg 
Mangan 98 mg 
Zink 65 mg 
Kupfer 14 mg 
Iod 1,2 mg 
Selen 0,14 mg 
Cobalt 0,15 mg 

 
 
 
 

Hauptprodukte 
E15000-00 Mehl, einfach vermahlen 
E15000-04 10 mm Pellets 

 
 
 
 
 
 

61 % aus
Kohlenhydraten 30 % aus

Protein

Zusammensetzung 
Auf Anfrage 

 

Produktion und Vertrieb
ssniff Spezialdiäten GmbH 
Phone: +49-(0)2921-9658-0 
Fax:  +49-(0)2921-9658-40 
E-mail mail@ssniff.de 
www.ssniff.de 

66 % aus
Kohlenhydraten 

23 % aus
Protein

1) Berechnungsgrundlage: Schätzformel 
für Schweine nach Anlage 4 der FMV 

2) Berechnet mit Atwater-Faktoren 

9 % 
aus Fett 

11 % 
aus Fett 
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E-Mail: info@altromin.de  -  http://www.altromin.de
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Nummer Lfd. Nummer Änderung 05.05.2009 13:07:04

C 1000  Kontrolldiät Ratte/Maus | Control Diet Rats/Mice10000010100000
Inhaltsstoff Einheit Bedarf Gehalt Differenz

mg/kgRohprotein / Crude Protein 176115,000

mg/kgRohfett / Crude Fat 50830,000

mg/kgRohfaser / Crude Fibre 40450,000

mg/kgRohasche / Crude Ash 54943,225

mg/kgFeuchtigkeit / Moisture 81735,625

mg/kgDisaccharide(s) 110960,500

mg/kgPolysaccharide(s) 471700,000

kcal/kgUmsetzb. Energie/Metab. Energy 3518,055

mg/kgLysin / Lysine 17400,970

mg/kgMethionin / Methionine 10688,000

mg/kgCystin / Cystine 3196,180

mg/kgThreonin / Threonine 7154,170

mg/kgTryptophan 1976,960

mg/kgArginin / Arginine 9828,790

mg/kgHistidin / Histidine 5275,790

mg/kgIsoleucin / Isoleucine 7222,820

mg/kgLeucin / Leucine 14762,770

mg/kgPhenylalanin / Phenylalanine 7171,970

mg/kgValin / Valine 3296,140

mg/kgAlanin / Alanine 2528,000

mg/kgAsparaginsäure / Aspartic acid 3583,140

mg/kgGlutaminsäure / Glutamic acid 23674,970

mg/kgGlycin / Glycine 3136,000

mg/kgProlin / Proline 12762,980

mg/kgSerin / Serine 5267,800

mg/kgTyrosin / Tyrosine 9285,010

I.E./kgVitamin A 15000,000

I.E./kgVitamin D3 500,000

mg/kgVitamin E 163,900

mg/kgVitamin K3 als/as Menadion(e) 10,000

mg/kgVitamin B1 20,040

mg/kgVitamin B2 20,322

mg/kgVitamin B6 15,034

mg/kgVitamin B12 0,030

mg/kgNikotinsäure / Nicotinic acid 50,170

mg/kgPantothensre./Pantothenic acid 50,106

mg/kgFolsäure / Folic acid 10,00240

mg/kgBiotin 0,201

mg/kgCholinchlorid/Choline chloride 1011,500

mg/kgP-Aminobenzoesre./Benzoic acid 100,000

mg/kgInosit / Inositol 111,000

mg/kgVitamin C 20,000

mg/kgCalcium 9310,506

mg/kgGes.Phosphor / Phosphorus 7522,765

mg/kgVerd.Phosphor/Digest.Phosporus 7199,565

mg/kgMagnesium 683,506

mg/kgNatrium / Sodium 2488,262

mg/kgKalium / Potassium 7088,682

mg/kgSchwefel / Sulfur 2791,540

mg/kgChlor / Chlorine 3630,000



 Seite: 2
Inhaltsstoff Einheit Bedarf Gehalt Differenz

mg/kgEisen / Iron 178,579

mg/kgMangan / Manganese 100,888

mg/kgZink / Zinc 29,299

mg/kgKupfer / Copper 5,751

mg/kgJod / Iodine 0,514

mg/kgMolybdän / Molybdenum 0,198

mg/kgFluor / Fluorine 4,170

mg/kgSelen / Selenium 0,334

mg/kgKobalt / Cobalt 0,147

mg/kgCaprinsäure C-10:0 2,500

mg/kgLaurinsäure C-12:0 2,500

mg/kgMyristinsäue C-14:0 2,500

mg/kgPentadecansäure C-15:0 2,500

mg/kgPalmitinsäure C-16:0 2700,000

mg/kgPalmitoleinsäure C-16:1 2,500

mg/kgMargarinsäure 2,500

mg/kgStearinsäure C-18:0 1250,000

mg/kgÖlsäure C-18:1 10950,000

mg/kgLinolsäure C-18:2 35050,000

mg/kgLinolensäure C-18:3 150,000

mg/kgArachinsäure C-20:0 250,000

mg/kgEicosaensäure C-20:1 250,000

mg/kgEicosadiensäure C-20:2 250,000

mg/kgArachidonsäure C-20:4 2,500

mg/kgEicosapentaensäure C-20:5 2,500

mg/kgBehensäure C-22:0 250,000

mg/kgDocosahexaensäure C-22:6 2,500

mg/kgTricosansäure 2,500

mg/kgNervonsäure C-24:1 2,500

mg/kgErucasäure  C-22:1 2,500

mg/kgAluminium 3,706

kgVolumen / Volume 1000,000
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5-ASA    Anti-inflammatory 5-aminosalicylic acid 

APC    antigen presenting cell 

ARE    TNFΔARE/WT mouse 

BM-DC  bone marrow-derived dendritic cell 

CD    Crohn´s disease 

Chow    standard Chow diet 

CL    cecal lysate 

DC   dendritic cell 

DS    dietary suspension 

DSS    dextran sodium sulfate 

ED    elemental diet  

EEN    exclusive enteral nutrition 

ELISA    enzyme-linked immunosorbent assay 

EN    enteral nutrition 

Exp    experimental diet  

FT-IR    Fourier-transform infrared spectroscopy 

GALT    gut-associated lymphoid tissue 

Glu    gluten-fortified experimental diet 

GWAS   genome-wide association studies  

H&E    hematoxylin and eosin 

H&E    hematoxylin and eosin 

HLA    human leukocyte antigen 

IBD   inflammatory bowel disease 

IBS    irritable bowel syndrome 

ICAM-1   intercellular adhesion molecule-1 

IEC    intestinal epithelial cell 

IEL    intraepithelial lymphocyte 

IFN-y    interferon-y 

IL    interleukin 

KLH   keyhole limpet hemocyanin 

LBP    lipopolysaccharide binding protein 

LPL    lamina propria lymphocyte 

LPS    lipopolysaccharide 

MAdCAM-1   mucosal vascular addressin cell adhesion molecule-1 

MLN   mesenteric lymph node 
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NF-κB    nuclear factor-κB 

NOD    nucleotide-binding oligomerization domain 

NSAID   nonsteroidal anti-inflammatory drug  

OCLN    occluding 

PAMP    pathogen-associated molecular pattern 

PN    parenteral nutrition 

PP    Peyer's patch 

PPAR    peroxisome proliferator-activated receptor  

PRR    pattern recognition receptor 

PUFA    polyunsaturated fatty acid  

RAG    recombination activating gene 

ROS    reactive oxygen species  

SAA    serum amyloid A 

SCFA    short-chain fatty acid  

SPF    specific pathogen-free 

TGF-β    transforming growth factor β 

TLR    toll-like receptor 

TNF    tumor necrosis factor 

tTG    tissue transglutaminase  

UC    ulcerative colitis 

WHO    World Health Organization 

WT    wild type mouse 

ZO-1    zonula occludens-1  
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